File size: 16,711 Bytes
9db7bb3
2720196
043971a
 
 
 
 
2720196
 
043971a
2720196
 
 
cda1077
2720196
 
 
eaeaf35
2720196
eaeaf35
2720196
7faf9f3
2720196
eaeaf35
2720196
 
eaeaf35
 
 
 
 
 
2720196
eaeaf35
4c6c365
 
 
2720196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c6c365
 
eaeaf35
2720196
eaeaf35
 
cda1077
eaeaf35
7faf9f3
eaeaf35
4c6c365
eaeaf35
4c6c365
 
 
 
 
 
eaeaf35
 
 
2720196
eaeaf35
 
 
 
 
 
7faf9f3
2720196
eaeaf35
2720196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaeaf35
4c6c365
 
2720196
 
 
 
 
eaeaf35
4c6c365
7faf9f3
2720196
 
4c6c365
 
7888a85
2720196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaeaf35
4c6c365
 
 
2720196
4c6c365
 
2720196
 
4c6c365
 
2720196
 
4c6c365
 
2720196
 
4c6c365
 
 
2720196
 
 
4c6c365
 
 
2720196
 
4c6c365
 
2720196
 
 
 
4c6c365
 
 
 
2720196
 
 
 
4c6c365
 
2720196
4c6c365
 
 
 
 
2720196
4c6c365
2720196
 
 
4c6c365
2720196
 
 
 
 
4c6c365
 
2720196
 
 
 
 
4c6c365
 
 
2720196
 
 
 
 
 
 
4c6c365
2720196
4c6c365
2720196
 
 
4c6c365
2720196
4c6c365
2720196
 
4c6c365
2720196
 
 
 
4c6c365
2720196
 
 
4c6c365
2720196
4c6c365
2720196
 
4c6c365
2720196
 
 
4c6c365
 
 
2720196
4c6c365
 
 
 
 
 
 
 
 
 
2720196
4c6c365
 
2720196
4c6c365
2720196
 
 
4c6c365
2720196
4c6c365
 
2720196
 
 
 
 
 
 
 
4c6c365
2720196
 
 
4c6c365
2720196
 
4c6c365
2720196
 
eaeaf35
2720196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import gradio as gr
from pydub import AudioSegment
import json
import uuid
import edge_tts
import asyncio
import aiofiles
import os
import time
import mimetypes
import torch
from typing import List, Dict
from transformers import AutoTokenizer, AutoModelForCausalLM

# Constants
MAX_FILE_SIZE_MB = 20
MAX_FILE_SIZE_BYTES = MAX_FILE_SIZE_MB * 1024 * 1024  # Convert MB to bytes

MODEL_ID = "HuggingFaceH4/zephyr-7b-alpha"

tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    device_map="auto"
).eval()


class PodcastGenerator:
    def __init__(self):
        pass

    async def generate_script(self, prompt: str, language: str, api_key: str, file_obj=None, progress=None) -> Dict:
        example = """
{
    "topic": "AGI",
    "podcast": [
        {
            "speaker": 2,
            "line": "So, AGI, huh? Seems like everyone's talking about it these days."
        },
        {
            "speaker": 1,
            "line": "Yeah, it's definitely having a moment, isn't it?"
        },
        {
            "speaker": 2,
            "line": "It is and for good reason, right? I mean, you've been digging into this stuff, listening to the podcasts and everything. What really stood out to you? What got you hooked?"
        },
        {
            "speaker": 1,
            "line": "I like that. It really is."
        },
        {
            "speaker": 2,
            "line": "And honestly, that's a responsibility that extends beyond just the researchers and the policymakers."
        },
        {
            "speaker": 1,
            "line": "100%"
        },
        {
            "speaker": 2,
            "line": "So to everyone listening out there I'll leave you with this. As AGI continues to develop, what role do you want to play in shaping its future?"
        },
        {
            "speaker": 1,
            "line": "That's a question worth pondering."
        },
        {
            "speaker": 2,
            "line": "It certainly is and on that note, we'll wrap up this deep dive. Thanks for listening, everyone."
        },
        {
            "speaker": 1,
            "line": "Peace."
        }
    ]
}
        """

        if language == "Auto Detect":
            language_instruction = "- The podcast MUST be in the same language as the user input."
        else:
            language_instruction = f"- The podcast MUST be in {language} language"

        system_prompt = f"""
You are a professional podcast generator. Your task is to generate a professional podcast script based on the user input.
{language_instruction}
- The podcast should have 2 speakers.
- The podcast should be long.
- Do not use names for the speakers.
- The podcast should be interesting, lively, and engaging, and hook the listener from the start.
- The input text might be disorganized or unformatted, originating from sources like PDFs or text files. Ignore any formatting inconsistencies or irrelevant details; your task is to distill the essential points, identify key definitions, and highlight intriguing facts that would be suitable for discussion in a podcast.
- The script must be in JSON format.
Follow this example structure:
{example}
"""
        # Construct system and user prompt
        if prompt and file_obj:
            user_prompt = f"Please generate a podcast script based on the uploaded file following user input:\n{prompt}"
        elif prompt:
            user_prompt = f"Please generate a podcast script based on the following user input:\n{prompt}"
        else:
            user_prompt = "Please generate a podcast script based on the uploaded file."

        # NOTE: file_obj cannot be passed to a text-only LLM
        if file_obj:
            print("Warning: Uploaded file is ignored in this version because external LLM does not support file input.")

        # Build prompt
        full_prompt = f"""{system_prompt}

{user_prompt}

Return the result strictly as a JSON object in the format:
{{
  "topic": "{prompt}",
  "podcast": [
    {{ "speaker": 1, "line": "..." }},
    {{ "speaker": 2, "line": "..." }}
  ]
}}
"""

        try:
            if progress:
                progress(0.3, "Generating podcast script...")

            inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
            output = model.generate(**inputs, max_new_tokens=1024)
            text = tokenizer.decode(output[0], skip_special_tokens=True)

        except Exception as e:
            raise Exception(f"Failed to generate podcast script: {e}")

        print(f"Generated podcast script:\n{text}")

        if progress:
            progress(0.4, "Script generated successfully!")

        try:
            return json.loads(text)
        except json.JSONDecodeError:
            raise Exception("The model did not return valid JSON. Please refine the prompt.")

    
    async def _read_file_bytes(self, file_obj) -> bytes:
        """Read file bytes from a file object"""
        # Check file size before reading
        if hasattr(file_obj, 'size'):
            file_size = file_obj.size
        else:
            file_size = os.path.getsize(file_obj.name)
            
        if file_size > MAX_FILE_SIZE_BYTES:
            raise Exception(f"File size exceeds the {MAX_FILE_SIZE_MB}MB limit. Please upload a smaller file.")
            
        if hasattr(file_obj, 'read'):
            return file_obj.read()
        else:
            async with aiofiles.open(file_obj.name, 'rb') as f:
                return await f.read()
    
    def _get_mime_type(self, filename: str) -> str:
        """Determine MIME type based on file extension"""
        ext = os.path.splitext(filename)[1].lower()
        if ext == '.pdf':
            return "application/pdf"
        elif ext == '.txt':
            return "text/plain"
        else:
            # Fallback to the default mime type detector
            mime_type, _ = mimetypes.guess_type(filename)
            return mime_type or "application/octet-stream"

    async def tts_generate(self, text: str, speaker: int, speaker1: str, speaker2: str) -> str:
        voice = speaker1 if speaker == 1 else speaker2
        speech = edge_tts.Communicate(text, voice)
        
        temp_filename = f"temp_{uuid.uuid4()}.wav"
        try:
            # Add timeout to TTS generation
            await asyncio.wait_for(speech.save(temp_filename), timeout=30)  # 30 seconds timeout
            return temp_filename
        except asyncio.TimeoutError:
            if os.path.exists(temp_filename):
                os.remove(temp_filename)
            raise Exception("Text-to-speech generation timed out. Please try with a shorter text.")
        except Exception as e:
            if os.path.exists(temp_filename):
                os.remove(temp_filename)
            raise e

    async def combine_audio_files(self, audio_files: List[str], progress=None) -> str:
        if progress:
            progress(0.9, "Combining audio files...")
            
        combined_audio = AudioSegment.empty()
        for audio_file in audio_files:
            combined_audio += AudioSegment.from_file(audio_file)
            os.remove(audio_file)  # Clean up temporary files

        output_filename = f"output_{uuid.uuid4()}.wav"
        combined_audio.export(output_filename, format="wav")
        
        if progress:
            progress(1.0, "Podcast generated successfully!")
            
        return output_filename

    async def generate_podcast(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
        try:
            if progress:
                progress(0.1, "Starting podcast generation...")
                
            # Set overall timeout for the entire process
            return await asyncio.wait_for(
                self._generate_podcast_internal(input_text, language, speaker1, speaker2, api_key, file_obj, progress),
                timeout=600  # 10 minutes total timeout
            )
        except asyncio.TimeoutError:
            raise Exception("The podcast generation process timed out. Please try with shorter text or try again later.")
        except Exception as e:
            raise Exception(f"Error generating podcast: {str(e)}")
    
    async def _generate_podcast_internal(self, input_text: str, language: str, speaker1: str, speaker2: str, api_key: str, file_obj=None, progress=None) -> str:
        if progress:
            progress(0.2, "Generating podcast script...")
            
        podcast_json = await self.generate_script(input_text, language, api_key, file_obj, progress)
        
        if progress:
            progress(0.5, "Converting text to speech...")
        
        # Process TTS in batches for concurrent processing
        audio_files = []
        total_lines = len(podcast_json['podcast'])
        
        # Define batch size to control concurrency
        batch_size = 10  # Adjust based on system resources
        
        # Process in batches
        for batch_start in range(0, total_lines, batch_size):
            batch_end = min(batch_start + batch_size, total_lines)
            batch = podcast_json['podcast'][batch_start:batch_end]
            
            # Create tasks for concurrent processing
            tts_tasks = []
            for item in batch:
                tts_task = self.tts_generate(item['line'], item['speaker'], speaker1, speaker2)
                tts_tasks.append(tts_task)
            
            try:
                # Process batch concurrently
                batch_results = await asyncio.gather(*tts_tasks, return_exceptions=True)
                
                # Check for exceptions and handle results
                for i, result in enumerate(batch_results):
                    if isinstance(result, Exception):
                        # Clean up any files already created
                        for file in audio_files:
                            if os.path.exists(file):
                                os.remove(file)
                        raise Exception(f"Error generating speech: {str(result)}")
                    else:
                        audio_files.append(result)
                        
                # Update progress
                if progress:
                    current_progress = 0.5 + (0.4 * (batch_end / total_lines))
                    progress(current_progress, f"Processed {batch_end}/{total_lines} speech segments...")
            
            except Exception as e:
                # Clean up any files already created
                for file in audio_files:
                    if os.path.exists(file):
                        os.remove(file)
                raise Exception(f"Error in batch TTS generation: {str(e)}")
        
        combined_audio = await self.combine_audio_files(audio_files, progress)
        return combined_audio

async def process_input(input_text: str, input_file, language: str, speaker1: str, speaker2: str, api_key: str = "", progress=None) -> str:
    start_time = time.time()

    voice_names = {
        "Andrew - English (United States)": "en-US-AndrewMultilingualNeural",
        "Ava - English (United States)": "en-US-AvaMultilingualNeural",
        "Brian - English (United States)": "en-US-BrianMultilingualNeural",
        "Emma - English (United States)": "en-US-EmmaMultilingualNeural",
        "Florian - German (Germany)": "de-DE-FlorianMultilingualNeural",
        "Seraphina - German (Germany)": "de-DE-SeraphinaMultilingualNeural",
        "Remy - French (France)": "fr-FR-RemyMultilingualNeural",
        "Vivienne - French (France)": "fr-FR-VivienneMultilingualNeural"
    }

    speaker1 = voice_names[speaker1]
    speaker2 = voice_names[speaker2]

    try:
        if progress:
            progress(0.05, "Processing input...")

        if not api_key:
            api_key = os.getenv("GENAI_API_KEY")
            if not api_key:
                raise Exception("No API key provided. Please provide a Gemini API key.")

        podcast_generator = PodcastGenerator()
        podcast = await podcast_generator.generate_podcast(input_text, language, speaker1, speaker2, api_key, input_file, progress)

        end_time = time.time()
        print(f"Total podcast generation time: {end_time - start_time:.2f} seconds")
        return podcast
        
    except Exception as e:
        # Ensure we show a user-friendly error
        error_msg = str(e)
        if "rate limit" in error_msg.lower():
            raise Exception("Rate limit exceeded. Please try again later or use your own API key.")
        elif "timeout" in error_msg.lower():
            raise Exception("The request timed out. This could be due to server load or the length of your input. Please try again with shorter text.")
        else:
            raise Exception(f"Error: {error_msg}")

# Gradio UI
def generate_podcast_gradio(input_text, input_file, language, speaker1, speaker2, api_key, progress=gr.Progress()):
    # Handle the file if uploaded
    file_obj = None
    if input_file is not None:
        file_obj = input_file
        
    # Use the progress function from Gradio
    def progress_callback(value, text):
        progress(value, text)

    # Run the async function in the event loop
    result = asyncio.run(process_input(
        input_text, 
        file_obj, 
        language, 
        speaker1, 
        speaker2, 
        api_key,
        progress_callback
    ))
    
    return result

def main():
    # Define language options
    language_options = [
        "Auto Detect",
        "Afrikaans", "Albanian", "Amharic", "Arabic", "Armenian", "Azerbaijani",
        "Bahasa Indonesian", "Bangla", "Basque", "Bengali", "Bosnian", "Bulgarian",
        "Burmese", "Catalan", "Chinese Cantonese", "Chinese Mandarin",
        "Chinese Taiwanese", "Croatian", "Czech", "Danish", "Dutch", "English",
        "Estonian", "Filipino", "Finnish", "French", "Galician", "Georgian",
        "German", "Greek", "Hebrew", "Hindi", "Hungarian", "Icelandic", "Irish",
        "Italian", "Japanese", "Javanese", "Kannada", "Kazakh", "Khmer", "Korean",
        "Lao", "Latvian", "Lithuanian", "Macedonian", "Malay", "Malayalam",
        "Maltese", "Mongolian", "Nepali", "Norwegian Bokmål", "Pashto", "Persian",
        "Polish", "Portuguese", "Romanian", "Russian", "Serbian", "Sinhala",
        "Slovak", "Slovene", "Somali", "Spanish", "Sundanese", "Swahili",
        "Swedish", "Tamil", "Telugu", "Thai", "Turkish", "Ukrainian", "Urdu",
        "Uzbek", "Vietnamese", "Welsh", "Zulu"
    ]
    
    # Define voice options
    voice_options = [
        "Andrew - English (United States)",
        "Ava - English (United States)",
        "Brian - English (United States)",
        "Emma - English (United States)",
        "Florian - German (Germany)",
        "Seraphina - German (Germany)",
        "Remy - French (France)",
        "Vivienne - French (France)"
    ]
    
    # Create Gradio interface
    with gr.Blocks(title="PodcastGen 🎙️") as demo:
        gr.Markdown("# PodcastGen 🎙️")
        gr.Markdown("Generate a 2-speaker podcast from text input or documents!")
        
        with gr.Row():
            with gr.Column(scale=2):
                input_text = gr.Textbox(label="Input Text", lines=10, placeholder="Enter text for podcast generation...")
            
            with gr.Column(scale=1):
                input_file = gr.File(label="Or Upload a PDF or TXT file", file_types=[".pdf", ".txt"])
        
        with gr.Row():
            with gr.Column():
                api_key = gr.Textbox(label="Your Gemini API Key (Optional)", placeholder="Enter API key here if you're getting rate limited", type="password")
                language = gr.Dropdown(label="Language", choices=language_options, value="Auto Detect")

            with gr.Column():
                speaker1 = gr.Dropdown(label="Speaker 1 Voice", choices=voice_options, value="Andrew - English (United States)")
                speaker2 = gr.Dropdown(label="Speaker 2 Voice", choices=voice_options, value="Ava - English (United States)")
        
        generate_btn = gr.Button("Generate Podcast", variant="primary")
        
        with gr.Row():
            output_audio = gr.Audio(label="Generated Podcast", type="filepath", format="wav")
            
        generate_btn.click(
            fn=generate_podcast_gradio,
            inputs=[input_text, input_file, language, speaker1, speaker2, api_key],
            outputs=[output_audio]
        )
    
    demo.launch()

if __name__ == "__main__":
    main()