File size: 36,902 Bytes
9db7bb3
2720196
043971a
 
 
 
 
2720196
 
 
2114e35
4b51c12
2114e35
4b51c12
 
17dc694
83b101f
17dc694
90e1d18
 
 
 
 
517bde4
90e1d18
17dc694
 
cda1077
90012de
96d857b
90012de
96d857b
f163f76
 
2720196
 
2114e35
eaeaf35
d5db13b
517bde4
 
4b51c12
 
 
 
 
 
 
517bde4
4b51c12
 
 
 
83b101f
90012de
 
 
83b101f
90012de
 
 
 
 
 
 
 
 
 
 
 
 
83b101f
4b51c12
 
e7f1392
4b51c12
 
e7f1392
4b51c12
 
7e8b797
36c9228
4b51c12
e7f1392
4b51c12
e7f1392
4b51c12
 
 
e7f1392
 
4b51c12
83b101f
 
7e8b797
83b101f
 
 
 
4b51c12
83b101f
 
 
 
 
4b51c12
e7f1392
4b51c12
e7f1392
4b51c12
 
 
 
 
 
 
 
e7f1392
4b51c12
 
e7f1392
 
 
 
 
 
 
4b51c12
 
 
 
 
 
 
 
add6bc6
eaeaf35
 
 
2114e35
 
 
 
4b51c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c31036
4b51c12
 
 
 
33c27dc
5c31036
 
 
 
e3740b6
39f08bf
e3740b6
 
d617a98
161f5a3
e3740b6
5c31036
 
161f5a3
 
 
 
e3740b6
5c31036
 
 
 
 
 
 
 
 
83b101f
 
5c31036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b51c12
 
 
 
 
 
 
 
 
2114e35
4b51c12
 
2114e35
 
4b51c12
 
2114e35
4b51c12
2114e35
 
4b51c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2114e35
 
4b51c12
2114e35
1718747
161f5a3
 
 
 
 
 
 
 
 
 
 
9e53d7b
18be79e
130163b
 
161f5a3
 
 
 
 
 
 
39f08bf
9e53d7b
 
 
 
 
2114e35
4b51c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2114e35
4b51c12
 
 
 
 
2114e35
 
60fc789
4b51c12
 
 
 
 
 
 
 
 
 
2114e35
4b51c12
2114e35
4b51c12
2114e35
4b51c12
2114e35
 
200606d
2114e35
 
4b51c12
2114e35
 
 
4b51c12
 
 
e61dcfd
33c27dc
2114e35
4b51c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2054de4
4b51c12
 
 
 
 
2054de4
4b51c12
 
 
 
2114e35
4b51c12
2114e35
4b51c12
2114e35
4b51c12
 
 
 
2114e35
2720196
 
4b51c12
1718747
7faf9f3
2114e35
c213376
7e8b797
e6bb43e
ea2131c
5d572a7
145665d
 
 
 
 
 
 
 
 
 
 
 
20beb72
e6bb43e
 
 
145665d
 
c3a6fbc
47b896d
2720196
eaeaf35
4c6c365
4b51c12
2720196
4b51c12
 
 
2114e35
20beb72
4b51c12
 
2114e35
ac28e38
200606d
2114e35
4b51c12
 
295aea0
7472d80
2114e35
a4fb93f
4b51c12
 
2114e35
4b51c12
 
 
2114e35
 
 
553d273
4b51c12
2114e35
4b51c12
 
 
 
2114e35
4b51c12
 
 
2114e35
4b51c12
 
60fc789
ed58370
5840761
8928c58
5c31036
2114e35
4b51c12
2720196
4b51c12
5840761
 
2720196
2114e35
4b51c12
1a3a31f
4b51c12
2114e35
 
 
4b51c12
 
60fc789
 
4b51c12
 
 
553d273
eaeaf35
4c6c365
4b51c12
4c6c365
4b51c12
2720196
4b51c12
 
 
 
 
 
 
 
 
2114e35
 
 
 
4b51c12
 
 
 
 
 
 
 
 
 
 
 
 
2114e35
 
4b51c12
 
2114e35
4b51c12
2114e35
 
 
 
4b51c12
 
2114e35
4b51c12
2114e35
 
 
4b51c12
 
4c6c365
 
4b51c12
2720196
4b51c12
2720196
4b51c12
 
2114e35
 
c6080e4
2114e35
 
 
4b51c12
 
 
 
 
 
 
 
 
c6080e4
 
4b51c12
 
2114e35
4b51c12
c6080e4
 
4b51c12
 
2114e35
 
 
 
 
4b51c12
 
2114e35
 
4b51c12
 
2114e35
 
4b51c12
 
 
 
 
 
2114e35
 
4b51c12
2114e35
4b51c12
c6080e4
4b51c12
 
2114e35
 
4b51c12
 
 
 
 
2114e35
4b51c12
2114e35
 
2720196
2114e35
4b51c12
 
 
2114e35
 
4b51c12
 
 
 
 
 
 
4c6c365
f1ad00c
4b51c12
 
 
 
4c6c365
2720196
4b51c12
2114e35
 
4b51c12
2114e35
2720196
4b51c12
 
2114e35
4b51c12
413618e
2114e35
4b51c12
2114e35
4b51c12
2114e35
 
4b51c12
2720196
2114e35
 
4b51c12
55b8c49
 
 
 
a9df8f7
55b8c49
 
 
 
 
 
 
 
 
 
2114e35
55b8c49
 
2114e35
 
 
 
4b51c12
2114e35
4b51c12
2114e35
 
 
 
4b51c12
2720196
2114e35
4b51c12
 
2114e35
4c6c365
2114e35
4b51c12
 
 
 
 
 
2114e35
 
 
4b51c12
 
 
 
2114e35
2720196
2114e35
4b51c12
 
 
 
 
2114e35
 
 
 
 
 
 
 
 
 
 
 
2720196
2114e35
4b51c12
 
 
 
 
4c6c365
2720196
4b51c12
2720196
2114e35
 
 
4b51c12
 
 
 
2114e35
 
 
4b51c12
 
 
 
 
 
 
 
 
 
 
2720196
 
2114e35
 
 
2720196
4b51c12
2114e35
 
4c6c365
4b51c12
 
 
 
2720196
7118f9e
4b51c12
 
 
 
2114e35
4b51c12
 
 
2114e35
 
4b51c12
 
2114e35
 
 
413618e
4b51c12
2114e35
4b51c12
 
 
2114e35
4b51c12
200606d
 
 
 
 
4b51c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2114e35
 
 
4b51c12
 
 
2114e35
4b51c12
 
 
 
2114e35
 
90012de
add6bc6
90012de
 
 
 
4b51c12
2720196
2114e35
 
2720196
 
2114e35
2720196
2114e35
c213376
2114e35
 
 
 
c213376
2114e35
2720196
4b51c12
 
 
 
 
 
2720196
 
2114e35
 
 
 
 
 
2720196
 
2114e35
 
 
52f0f4a
54385bf
2114e35
2720196
 
2114e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b51c12
 
2114e35
2720196
413618e
 
 
4b51c12
 
413618e
 
2114e35
 
 
 
 
 
2720196
2114e35
2720196
 
7f3c58e
4b51c12
2114e35
2720196
bddac17
 
 
 
 
 
 
 
 
3808658
bddac17
9e65d57
 
b7e98dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
import gradio as gr
from pydub import AudioSegment
import json
import uuid
import edge_tts
import asyncio
import aiofiles
import os
import time
import torch
import re
from typing import List, Dict, Optional
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import PyPDF2
import traceback
import os


import shutil
from pathlib import Path

model_subdir = Path.home() / ".cache" / "huggingface" / "hub" / "models--unsloth--Llama-3.2-3B"



# Enable persistent caching on Hugging Face Spaces (if persistent storage is enabled)
os.environ["TRANSFORMERS_CACHE"] = "/data/models"

#from git import Repo

#Repo.clone_from("https://huggingface.co/unsloth/Llama-3.2-3B-bnb-4bit", "./local_model_dir")



# Constants
MAX_FILE_SIZE_MB = 20
MAX_FILE_SIZE_BYTES = MAX_FILE_SIZE_MB * 1024 * 1024

MODEL_ID = "meta-llama/Meta-Llama-3-8B" #unsloth/Llama-3.2-3B" #meta-llama/Meta-Llama-3-8B"# unsloth/Llama-3.2-3B"#meta-llama/Meta-Llama-3-8B" #"unsloth/Llama-4-Scout-17B-16E-Instruct-GGUF"# unsloth/Qwen2.5-1.5B" #unsloth/Llama-3.2-3B" #unsloth/Llama-3.2-1B"
glotoken = os.environ.get("Tokentest")
# Global logging system -
logs = []

def add_log(message):
    """Thread-safe logging function"""
    logs.append(f"[{time.strftime('%H:%M:%S')}] {message}")
    print(message)

# Initialize model with comprehensive error handling 
model = None
tokenizer = None
generation_config = None


def test_llm_generation():
    try:
        test_prompt = "Hello, how are you today?"
        inputs = tokenizer(test_prompt, return_tensors="pt").to(model.device)
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=10,
                do_sample=False,
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id
            )
        result = tokenizer.decode(outputs[0], skip_special_tokens=True)
        add_log(f"πŸ§ͺ Test LLM response: {result[:100]}")
    except Exception as e:
        add_log(f"❌ LLM quick test failed: {e}")


def initialize_model():
    global model, tokenizer, generation_config

    try:
        add_log("πŸ”„ Initializing model...")

        tokenizer = AutoTokenizer.from_pretrained(
            MODEL_ID,
            cache_dir="/data/models",
            token=glotoken,
            trust_remote_code=True,
            use_fast=False
        )

        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
            add_log("βœ… Set pad_token to eos_token")

        # Force GPU settings
        model = AutoModelForCausalLM.from_pretrained(
            MODEL_ID,
            torch_dtype=torch.float16,
            cache_dir="/data/models",
            trust_remote_code=True,
            token=glotoken,
            device_map={"": 0},  # <- force GPU:0
            low_cpu_mem_usage=True
        )
       # model = AutoModelForCausalLM.from_pretrained(
       #     MODEL_ID,  
       #     cache_dir="/data/models",
       #     trust_remote_code=True
       # )
        model.eval()

        generation_config = GenerationConfig(
            max_new_tokens=4096,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
            repetition_penalty=1.1,
            length_penalty=1.0
        )

        add_log(f"βœ… Model loaded successfully on device: {model.device}")
        return True

    except Exception as e:
        error_msg = f"❌ Model initialization failed: {str(e)}"
        add_log(error_msg)
        add_log(f"Traceback: {traceback.format_exc()}")
        return False

        
    except Exception as e:
        error_msg = f"❌ Model initialization failed: {str(e)}"
        add_log(error_msg)
        add_log(f"Traceback: {traceback.format_exc()}")
        return False

# Initialize model at startup
model_loaded = initialize_model()

class PodcastGenerator:
    def __init__(self):
        self.model = model
        self.tokenizer = tokenizer
        self.generation_config = generation_config

    def extract_text_from_pdf(self, file_path: str) -> str:
        """Extract text from PDF file - CRITICAL FIX #3"""
        try:
            add_log(f"πŸ“– Extracting text from PDF: {file_path}")
            
            with open(file_path, 'rb') as file:
                pdf_reader = PyPDF2.PdfReader(file)
                text = ""
                
                for page_num, page in enumerate(pdf_reader.pages):
                    try:
                        page_text = page.extract_text()
                        text += page_text + "\n"
                        add_log(f"βœ… Extracted page {page_num + 1}")
                    except Exception as e:
                        add_log(f"⚠️ Failed to extract page {page_num + 1}: {e}")
                        continue
                
                if not text.strip():
                    raise Exception("No text could be extracted from PDF")
                    
                add_log(f"βœ… PDF extraction complete. Text length: {len(text)} characters")
                return text.strip()

        except Exception as e:
            error_msg = f"❌ PDF extraction failed: {str(e)}"
            add_log(error_msg)
            raise Exception(error_msg)

    async def postprocess_conversation(self, raw_text: str) -> str:
        """Run LLM again to enforce strict Speaker 1/2 format"""
        prompt = f"""
You are a podcast formatter.
You just reformat text as if two persons have a conversation
- Every line begins with exactly and strictily with `Speaker 1:` or `Speaker 2:` (with colon)
- No timestamps, no names, no parentheses, no  extra formatting, no chapter names, no special characters beside ":" 
- No blank lines allowed
- Do not invent or change the content, do not add or use -any- person or speaker names, chapeter names , time stamps etc
- you are not allowed to use anywhere in the text the character +#-*<>"()[]
Example output - you have to follow this structure:
Speaker 1: Hello and welcome.
Speaker 2: Thanks! Glad to be here.
Speaker 1: ...
Speaker 2: ...
Speaker 1: ...
Speaker 2: ...
Now format the following according to above instructions
{raw_text}
"""

        inputs = self.tokenizer(
            prompt,
            return_tensors="pt",
            truncation=True,
            max_length=2048
        )
        inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
        #inputs = {k: v for k, v in inputs.items()}
        with torch.no_grad():
            outputs = self.model.generate(
                **inputs,
                max_new_tokens=1024,
                pad_token_id=self.tokenizer.pad_token_id,
                eos_token_id=self.tokenizer.eos_token_id
            )

        formatted = self.tokenizer.decode(
            outputs[0][inputs['input_ids'].shape[1]:],
            skip_special_tokens=True
        )
        return formatted.strip()


    def clean_and_validate_json(self, text: str) -> Dict:
        """Improved JSON extraction and validation - CRITICAL FIX #4"""
        add_log("πŸ” Attempting to extract JSON from generated text")
        
        # Multiple strategies for JSON extraction
        strategies = [
            # Strategy 1: Look for complete JSON objects
            r'\{[^{}]*"topic"[^{}]*"podcast"[^{}]*\[[^\]]*\][^{}]*\}',
            # Strategy 2: More flexible pattern
            r'\{.*?"topic".*?"podcast".*?\[.*?\].*?\}',
            # Strategy 3: Extract content between first { and last }
            r'\{.*\}'
        ]
        
        for i, pattern in enumerate(strategies):
            add_log(f"🎯 Trying extraction strategy {i+1}")
            matches = re.findall(pattern, text, re.DOTALL | re.IGNORECASE)
            
            for match in matches:
                try:
                    # Clean the match
                    cleaned = match.strip()
                    # Fix common JSON issues
                    cleaned = re.sub(r',\s*}', '}', cleaned)  # Remove trailing commas
                    cleaned = re.sub(r',\s*]', ']', cleaned)  # Remove trailing commas in arrays
                    
                    parsed = json.loads(cleaned)
                    
                    # Validate structure
                    if self.validate_podcast_structure(parsed):
                        add_log("βœ… Valid JSON structure found")
                        return parsed
                        
                except json.JSONDecodeError as e:
                    add_log(f"⚠️ JSON parse error in strategy {i+1}: {e}")
                    continue
        
        add_log("⚠️ No valid JSON found, creating fallback")
        return self.create_fallback_podcast(text)
        
    def normalize_speaker_lines(self,text: str) -> str:
        """Normalize lines to 'Speaker 1: text' format based on presence of 1 or 2 and a ':' or '-'."""
        # Convert markdown and bracketed formats to 'Speaker X: ...'
        text = re.sub(
            r'(?i)^.*?([12])[^a-zA-Z0-9]*[:\-]\s*',
            lambda m: f"Speaker {m.group(1)}: ",
            text,
            flags=re.MULTILINE
        )
        return text    
        
    def conversation_to_json(self, text: str) -> Dict:

        """Convert speaker-formatted text to podcast JSON structure"""
        # Allow leading whitespace and enforce full line match
        """Convert speaker-formatted text to podcast JSON structure"""
        text = self.normalize_speaker_lines(text)

         
        # Match strict "Speaker X: ..." lines only
        lines = re.findall(r'^Speaker\s+([12]):\s*(.+)', text, flags=re.MULTILINE)
        podcast = [{"speaker": int(s), "line": l.strip()} for s, l in lines]

        return {
            "topic": "Generated from Input",
            "podcast": podcast
        }


    def validate_podcast_structure(self, data: Dict) -> bool:
        """Validate podcast JSON structure"""
        try:
            if not isinstance(data, dict):
                return False
            
            if 'topic' not in data or 'podcast' not in data:
                return False
                
            if not isinstance(data['podcast'], list):
                return False
                
            for item in data['podcast']:
                if not isinstance(item, dict):
                    return False
                if 'speaker' not in item or 'line' not in item:
                    return False
                if not isinstance(item['speaker'], int) or item['speaker'] not in [1, 2]:
                    return False
                if not isinstance(item['line'], str) or len(item['line'].strip()) == 0:
                    return False
            
            return len(data['podcast']) > 0
            
        except Exception:
            return False

    def create_fallback_podcast(self, text: str) -> Dict:
        """Create fallback podcast structure - IMPROVED"""
        add_log("πŸ”§ Creating fallback podcast structure")
        
        # Extract meaningful content from the original text
        sentences = [s.strip() for s in text.split('.') if len(s.strip()) > 20]
        
        if not sentences:
            add_log("πŸ”§ failed sentences creating, fallback standard text")
            sentences = [
                "Welcome to our podcast discussion",
                "Today we're exploring an interesting topic",
                "Let's dive into the key points",
                "That's a fascinating perspective",
                "What are your thoughts on this matter",
                "I think there are multiple angles to consider",
                "This is definitely worth exploring further",
                "Thank you for this engaging conversation"
            ]
        
        # Create balanced conversation
        podcast_lines = []
        for i, sentence in enumerate(sentences[:12]):  # Limit to 12 exchanges
            speaker = (i % 2) + 1
            line = sentence + "." if not sentence.endswith('.') else sentence
            podcast_lines.append({
                "speaker": speaker,
                "line": line
            })
        
        result = {
            "topic": "Generated Discussion",
            "podcast": podcast_lines
        }
        
        add_log(f"βœ… Fallback podcast created with {len(podcast_lines)} lines")
        return result
        

    async def generate_script(self, prompt: str, language: str, file_obj=None, progress=None) -> Dict:
        """Improved script generation with better error handling"""
        if not model_loaded or not self.model or not self.tokenizer:
            raise Exception("❌ Model not properly initialized. Please restart the application.")

        add_log("🎬 Starting script generation")
        
        # Process file if provided - CRITICAL FIX #5
        if file_obj is not None:
            try:
                add_log(f"πŸ“ Processing uploaded file: {file_obj}")
                
                if file_obj.endswith('.pdf'):
                    extracted_text = self.extract_text_from_pdf(file_obj)
                    # Truncate if too long
                    if len(extracted_text) > 2000:
                        extracted_text = extracted_text[:2000] + "..."
                        add_log("βœ‚οΈ Text truncated to 2000 characters")
                    prompt = extracted_text
                elif file_obj.endswith('.txt'):
                    with open(file_obj, 'r', encoding='utf-8') as f:
                        file_content = f.read()
                    if len(file_content) > 2000:
                        file_content = file_content[:2000] + "..."
                    prompt = file_content
                    
            except Exception as e:
                add_log(f"⚠️ File processing error: {e}")
                # Continue with original prompt

        # Create focused prompt - CRITICAL FIX #6
        example_json = {
            "topic": "AI Technology",
            "podcast": [
                {"speaker": 1, "line": "Welcome to our discussion about AI technology."},
                {"speaker": 2, "line": "Thanks for having me. This is such an exciting field."},
                {"speaker": 1, "line": "What aspects of AI do you find most interesting?"},
                {"speaker": 2, "line": "I'm particularly fascinated by machine learning applications."}
            ]
        }

        # Simplified and more reliable prompt
        system_prompt = f"""Create a podcast script 

Requirements:
- Exactly two speakers: Speaker 1 and Speaker 2
- The podcast should fill 4-5 minutes, focusing on the core context of the input text
- DO NOT copy the example below , only use it as conversation reference 
- The podcast should be professional, lively, witty and engaging, and hook the listener from the start.
- The input text might be disorganized or unformatted. Ignore any formatting inconsistencies or irrelevant details; your task is to distill the essential points, 

{{
  "topic": "Short and engaging title",
  "podcast": [
    {{"speaker": 1, "line": "Welcome to the podcast."}},
    {{"speaker": 2, "line": "Thank you, great to be here."}},
    {{"speaker": 1, "line": "..."}},
    {{"speaker": 2, "line": "..."}}
  ]
}}

Return only valid JSON. Do not include explanation, markdown, or comments.
"""
        
#Example JSON structure:
#{json.dumps(example_json, indent=2)}
        #user_prompt = f"\nInput Text:\n{prompt}\n\nPodcast Script:" #user_prompt = user_prompt = f"\nInput Text:\n{prompt}\n\nJSON:"# f"\nTopic: {prompt}\nJSON:"
        user_prompt = f"\nInput Text:\n{prompt}\n\nJSON:"
        full_prompt = system_prompt + user_prompt
        add_log("πŸ” Prompt Preview:\n" + full_prompt[:2000])

        try:
            if progress:
                progress(0.3, "πŸ€– Generating script...")

            add_log("πŸ”€ Tokenizing input...")
            
            # Tokenize with proper handling
            inputs = self.tokenizer(
                full_prompt,
                return_tensors="pt",
                padding=True,
                truncation=True,
                max_length=1200,  # Reduced for stability
                return_attention_mask=True
            )
            
            # Move to correct device
            inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
            add_log(f"βœ… Inputs moved to device: ")

            add_log("self🧠 Generating with model...")
            
            # Generate with timeout and better parameters
            with torch.no_grad():
                torch.cuda.empty_cache() if torch.cuda.is_available() else None
                
                outputs = self.model.generate(
                    **inputs,
                    generation_config=self.generation_config,
                    pad_token_id=self.tokenizer.pad_token_id,
                    # attention_mask=inputs.get('attention_mask'),
                    use_cache=True
                )

            add_log("βœ… Model generation complete")

            # Decode only new tokens
            generated_text = self.tokenizer.decode(
                outputs[0][inputs['input_ids'].shape[1]:],
                skip_special_tokens=True,
                clean_up_tokenization_spaces=True
            )
            
            add_log(f"πŸ“ Generated text length: {len(generated_text)} characters")
            add_log(f"πŸ” Generated text preview: {generated_text[:2000]}...")

            #formatted_text = await self.postprocess_conversation(generated_text)
            #add_log(f"🧼 Post-processed text:\n{formatted_text[:2000]}")

            if progress:
                progress(0.4, "πŸ” Processing generated script...")

            # Extract and validate JSON
            result = self.clean_and_validate_json(generated_text)
            #result = self.conversation_to_json(formatted_text)
            
            if progress:
                progress(0.5, "βœ… Script generated successfully!")
            add_log(f"πŸ“„ Full generated text:\n{generated_text}")
            add_log(f"βœ… Final script has {len(result.get('podcast', []))} lines")
            return result

        except Exception as e:
            error_msg = f"❌ Script generation error: {str(e)}"
            add_log(error_msg)
            add_log(f"πŸ” failed script creation")
            
            add_log(f"πŸ” Traceback: {traceback.format_exc()}")
            
            # Return robust fallback
            return self.create_fallback_podcast("Welcome to our podcast")

    async def tts_generate(self, text: str, speaker: int, speaker1: str, speaker2: str) -> str:
        """Improved TTS generation with better error handling - CRITICAL FIX #7"""
        voice = speaker1 if speaker == 1 else speaker2
        add_log(f"πŸŽ™οΈ Generating TTS for speaker {speaker} with voice {voice}")
        
        # Clean text for TTS
        text = text.strip()
        if not text:
            raise Exception("Empty text for TTS")
        
        # Remove problematic characters
        text = re.sub(r'[^\w\s.,!?;:\-\'"()]', '', text)
        
        temp_filename = f"temp_audio_{uuid.uuid4().hex[:8]}.wav"
        max_retries = 3
        
        for attempt in range(max_retries):
            try:
                add_log(f"🎡 TTS attempt {attempt + 1} for: {text[:50]}...")
                
                communicate = edge_tts.Communicate(text, voice)
                
                # Use asyncio.wait_for with timeout
                await asyncio.wait_for(
                    communicate.save(temp_filename),
                    timeout=30.0
                )
                
                # Verify file was created and has content
                if os.path.exists(temp_filename) and os.path.getsize(temp_filename) > 1000:
                    add_log(f"βœ… TTS successful: {os.path.getsize(temp_filename)} bytes")
                    return temp_filename
                else:
                    raise Exception("Generated audio file is too small or empty")
                    
            except asyncio.TimeoutError:
                add_log(f"⏰ TTS timeout on attempt {attempt + 1}")
                if os.path.exists(temp_filename):
                    os.remove(temp_filename)
                if attempt == max_retries - 1:
                    raise Exception("TTS generation timed out after multiple attempts")
                await asyncio.sleep(2)
                
            except Exception as e:
                add_log(f"❌ TTS error on attempt {attempt + 1}: {str(e)}")
                if os.path.exists(temp_filename):
                    os.remove(temp_filename)
                if attempt == max_retries - 1:
                    raise Exception(f"TTS generation failed after {max_retries} attempts: {str(e)}")
                await asyncio.sleep(2)

    async def combine_audio_files(self, audio_files: List[str], progress=None) -> str:
        """Improved audio combination - CRITICAL FIX #8"""
        if progress:
            progress(0.9, "🎡 Combining audio files...")
            
        add_log(f"πŸ”— Combining {len(audio_files)} audio files")
        
        try:
            combined_audio = AudioSegment.empty()
            silence_padding = AudioSegment.silent(duration=800)  # 800ms silence
            
            for i, audio_file in enumerate(audio_files):
                try:
                    add_log(f"πŸ“ Processing audio file {i+1}: {audio_file}")
                    
                    if not os.path.exists(audio_file):
                        add_log(f"⚠️ Audio file not found: {audio_file}")
                        continue
                    
                    file_size = os.path.getsize(audio_file)
                    add_log(f"πŸ“Š File size: {file_size} bytes")
                    
                    if file_size < 2000:
                        add_log(f"⚠️ 1 Audio file too small, skipping: {audio_file}")
                        continue
                    
                    audio_segment = AudioSegment.from_file(audio_file)
                    
                    if len(audio_segment) < 500:  # Less than 100ms
                        add_log(f"⚠️ 2 Audio segment too short, skipping")
                        continue
                    
                    combined_audio += audio_segment
                    
                    # Add silence between speakers (except for the last file)
                    if i < len(audio_files) - 1:
                        combined_audio += silence_padding
                    
                    add_log(f"βœ… Added audio segment {i+1}, total duration: {len(combined_audio)}ms")
                        
                except Exception as e:
                    add_log(f"⚠️ Could not process audio file {audio_file}: {e}")
                    continue
                finally:
                    # Clean up temporary file
                    try:
                        if os.path.exists(audio_file):
                            os.remove(audio_file)
                            add_log(f"πŸ—‘οΈ Cleaned up temp file: {audio_file}")
                    except:
                        pass

            if len(combined_audio) == 0:
                raise Exception("No valid audio content was generated")

            if len(combined_audio) < 5000:  # Less than 5 seconds
                raise Exception("3 Combined audio is too short")

            output_filename = f"podcast_output_{uuid.uuid4().hex[:8]}.wav"
            combined_audio.export(output_filename, format="wav")
            
            file_size = os.path.getsize(output_filename)
            duration = len(combined_audio) / 1000  # Duration in seconds
            
            add_log(f"βœ… Final podcast: {output_filename} ({file_size} bytes, {duration:.1f}s)")
            
            if progress:
                progress(1.0, "πŸŽ‰ Podcast generated successfully!")
                
            return output_filename
            
        except Exception as e:
            error_msg = f"❌ Audio combination failed: {str(e)}"
            add_log(error_msg)
            
            # Clean up any remaining temp files
            for audio_file in audio_files:
                try:
                    if os.path.exists(audio_file):
                        os.remove(audio_file)
                except:
                    pass
            
            raise Exception(error_msg)

    async def generate_podcast(self, input_text: str, language: str, speaker1: str, speaker2: str, file_obj=None, progress=None) -> str:
        """Main podcast generation pipeline - CRITICAL FIX #9"""
        start_time = time.time()
        add_log("🎬 Starting podcast generation pipeline")
        
        try:
            if progress:
                progress(0.1, "πŸš€ Starting podcast generation...")

            # Generate script
            add_log("πŸ“ Generating podcast script...")
            podcast_json = await self.generate_script(input_text, language, file_obj, progress)
            
            if not podcast_json.get('podcast') or len(podcast_json['podcast']) == 0:
                raise Exception("No podcast content was generated")

            add_log(f"βœ… Script generated with {len(podcast_json['podcast'])} dialogue lines")
            
            if progress:
                progress(0.5, "πŸŽ™οΈ Converting text to speech...")

            # Generate TTS with proper error handling
            audio_files = []
            total_lines = len(podcast_json['podcast'])
            successful_lines = 0
            
            for i, item in enumerate(podcast_json['podcast']):
                try:
                    add_log(f"🎡 Processing line {i+1}/{total_lines}: Speaker {item['speaker']}")
                    clean_line = item['line']

                    # πŸ”§ Sanitize malformed lines
                    if not isinstance(clean_line, str) or len(clean_line.strip()) == 0 or clean_line.strip().startswith('"') or "{" in clean_line:
                        add_log(f"⚠️ Malformed line detected for speaker {item['speaker']}: {repr(clean_line[:80])}")
                    # Try to recover from JSON-like noise
                    candidates = re.findall(r'\"line\"\s*:\s*\"([^\"]+)\"', clean_line)
                    if candidates:
                        clean_line = candidates[0]
                        add_log(f"βœ… Recovered line: {clean_line}")
                    else:
                        # Fallback: strip bad characters
                        clean_line = re.sub(r'[^A-Za-z0-9\s.,!?;:\-\'"]+', '', clean_line)
                        add_log(f"πŸ› οΈ Cleaned fallback line: {clean_line}")

                    audio_file = await self.tts_generate(
                        clean_line,
                        #item['line'], 
                        item['speaker'], 
                        speaker1, 
                        speaker2
                    )
                    
                    audio_files.append(audio_file)
                    successful_lines += 1
                    
                    # Update progress
                    if progress:
                        current_progress = 0.5 + (0.4 * (i + 1) / total_lines)
                        progress(current_progress, f"πŸŽ™οΈ Generated speech {successful_lines}/{total_lines}")
                        
                except Exception as e:
                    add_log(f"❌ TTS failed for line {i+1}: {e}")
                    # Continue with remaining lines rather than failing completely
                    continue

            if not audio_files:
                raise Exception("No audio files were generated successfully")
            
            if successful_lines < len(podcast_json['podcast']) / 2:
                add_log(f"⚠️ Warning: Only {successful_lines}/{total_lines} lines processed successfully")

            add_log(f"βœ… TTS generation complete: {len(audio_files)} audio files")

            # Combine audio files
            combined_audio = await self.combine_audio_files(audio_files, progress)
            
            elapsed_time = time.time() - start_time
            add_log(f"πŸŽ‰ Podcast generation completed in {elapsed_time:.1f} seconds")
            
            return combined_audio

        except Exception as e:
            elapsed_time = time.time() - start_time
            error_msg = f"❌ Podcast generation failed after {elapsed_time:.1f}s: {str(e)}"
            add_log(error_msg)
            add_log(f"πŸ” Full traceback: {traceback.format_exc()}")
            raise Exception(error_msg)

# Voice mapping
VOICE_MAPPING = {
    "Andrew - English (United States)": "en-US-AndrewMultilingualNeural",
    "Ava - English (United States)": "en-US-AvaMultilingualNeural",
    "Brian - English (United States)": "en-US-BrianMultilingualNeural",
    "Emma - English (United States)": "en-US-EmmaMultilingualNeural",
    "Florian - German (Germany)": "de-DE-FlorianMultilingualNeural",
    "Seraphina - German (Germany)": "de-DE-SeraphinaMultilingualNeural",
    "Remy - French (France)": "fr-FR-RemyMultilingualNeural",
    "Vivienne - French (France)": "fr-FR-VivienneMultilingualNeural"
}

async def process_input(input_text: str, input_file, language: str, speaker1: str, speaker2: str, progress=None) -> str:
    """Process input and generate podcast - MAIN ENTRY POINT"""
    add_log("=" * 50)
    add_log("🎬 NEW PODCAST GENERATION REQUEST")
    add_log("=" * 50)
    
    try:
        if progress:
            progress(0.05, "πŸ” Processing input...")

        # Map speaker names to voice IDs
        speaker1_voice = VOICE_MAPPING.get(speaker1, "en-US-AndrewMultilingualNeural")
        speaker2_voice = VOICE_MAPPING.get(speaker2, "en-US-AvaMultilingualNeural")
        
        add_log(f"🎭 Speaker 1: {speaker1} -> {speaker1_voice}")
        add_log(f"🎭 Speaker 2: {speaker2} -> {speaker2_voice}")
        
        # Validate input
        if not input_text or input_text.strip() == "":
            if input_file is None:
                raise Exception("❌ Please provide either text input or upload a file")
            add_log("πŸ“ No text input provided, will process uploaded file")
        else:
            add_log(f"πŸ“ Text input provided: {len(input_text)} characters")

        if input_file:
            add_log(f"πŸ“Ž File uploaded: {input_file}")

        # Check model status
        if not model_loaded:
            raise Exception("❌ Model not loaded. Please restart the application.")

        podcast_generator = PodcastGenerator()
        result = await podcast_generator.generate_podcast(
            input_text, language, speaker1_voice, speaker2_voice, input_file, progress
        )

        add_log("πŸŽ‰ PODCAST GENERATION COMPLETED SUCCESSFULLY")
        return result

    except Exception as e:
        error_msg = f"❌ CRITICAL ERROR: {str(e)}"
        add_log(error_msg)
        add_log(f"πŸ” Traceback: {traceback.format_exc()}")
        raise Exception(error_msg)

def generate_podcast_gradio(input_text, input_file, language, speaker1, speaker2):
    """Gradio interface function - CRITICAL FIX #10"""
    global logs
    logs = []  # Reset logs for each generation
    
    try:
        add_log("🎬 Gradio function called")
        add_log(f"πŸ“‹ Parameters: text={bool(input_text)}, file={bool(input_file)}, lang={language}")
        
        # Validate inputs
        if not input_text and input_file is None:
            add_log("❌ No input provided")
            return None, "\n".join(logs)
            
        if input_text and len(input_text.strip()) == 0:
            input_text = None

        # Progress tracking
        def progress_callback(value, text):
            add_log(f"πŸ“Š Progress: {value:.1%} - {text}")

        # Create new event loop for this request - CRITICAL FIX
        try:
            # Try to get existing loop
            try:
                loop = asyncio.get_running_loop()
            except RuntimeError:
                loop = asyncio.new_event_loop()
                asyncio.set_event_loop(loop)
            if loop.is_running():
                # If loop is running, we need to run in thread
                import concurrent.futures
                with concurrent.futures.ThreadPoolExecutor() as executor:
                    future = executor.submit(
                        lambda: asyncio.run(
                            process_input(input_text, input_file, language, speaker1, speaker2, progress_callback)
                        )
                    )
                    result = future.result(timeout=300)  # 5 minute timeout
            else:
                result = loop.run_until_complete(
                    process_input(input_text, input_file, language, speaker1, speaker2, progress_callback)
                )
        except RuntimeError:
            # No event loop exists, create new one
            result = asyncio.run(
                process_input(input_text, input_file, language, speaker1, speaker2, progress_callback)
            )
            
        add_log("βœ… Gradio function completed successfully")
        return result, "\n".join(logs)
        
    except Exception as e:
        error_msg = f"❌ Gradio function error: {str(e)}"
        add_log(error_msg)
        add_log(f"πŸ” Traceback: {traceback.format_exc()}")
        return None, "\n".join(logs)

def create_interface():
    
    #model_loaded = initialize_model()
    if model_loaded:
        test_llm_generation()
    
    
    """Create the Gradio interface"""
    language_options = [
        "Auto Detect", "English", "German", "French", "Spanish", "Italian", 
        "Portuguese", "Dutch", "Russian", "Chinese", "Japanese", "Korean"
    ]
    
    voice_options = list(VOICE_MAPPING.keys())
    
    with gr.Blocks(
        title="Pasching Podcast 2πŸŽ™οΈ",
        theme=gr.themes.Soft(),
        css=".gradio-container {max-width: 1200px; margin: auto;}"
    ) as demo:
        
        gr.Markdown("# πŸŽ™οΈ Pasching Podcast 2")
        gr.Markdown("Generate professional 2-speaker podcasts from text input!")
        
        # Model status indicator
        if model_loaded:
            gr.Markdown("βœ… **Model Status: Ready**")
        else:
            gr.Markdown("❌ **Model Status: Failed to Load**")
        
        with gr.Row():
            with gr.Column(scale=2):
                input_text = gr.Textbox(
                    label="Input Text",
                    lines=8,
                    placeholder="Enter your topic or text for podcast generation...",
                    info="Describe what you want the podcast to discuss"
                )
            
            with gr.Column(scale=1):
                input_file = gr.File(
                    label="Upload File (Optional)",
                    file_types=[".pdf", ".txt"],
                    type="filepath",
                    #info=f"Max size: {MAX_FILE_SIZE_MB}MB"
                )
        
        with gr.Row():
            language = gr.Dropdown(
                label="Language",
                choices=language_options,
                value="Auto Detect",
                info="Select output language"
            )
            
            speaker1 = gr.Dropdown(
                label="Speaker 1 Voice",
                choices=voice_options,
                value="Andrew - English (United States)"
            )
            
            speaker2 = gr.Dropdown(
                label="Speaker 2 Voice",
                choices=voice_options,
                value="Ava - English (United States)"
            )
        
        generate_btn = gr.Button(
            "πŸŽ™οΈ Generate Podcast",
            variant="primary",
            size="lg",
            interactive=model_loaded
        )
        
        log_output = gr.Textbox(
            label="πŸͺ΅ Debug & Transcript Log",
            lines=15,
            interactive=False,
            info="Real-time generation logs and debugging information"
        )
        
        output_audio = gr.Audio(
            label="Generated Podcast",
            type="filepath",
            format="wav",
            show_download_button=True
        )
        
        # Connect the interface
        generate_btn.click(
            fn=generate_podcast_gradio,
            inputs=[input_text, input_file, language, speaker1, speaker2],
            outputs=[output_audio, log_output],
            show_progress=True
        )
    return demo


if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        share=False
    )