Spaces:
Sleeping
Sleeping
File size: 36,902 Bytes
9db7bb3 2720196 043971a 2720196 2114e35 4b51c12 2114e35 4b51c12 17dc694 83b101f 17dc694 90e1d18 517bde4 90e1d18 17dc694 cda1077 90012de 96d857b 90012de 96d857b f163f76 2720196 2114e35 eaeaf35 d5db13b 517bde4 4b51c12 517bde4 4b51c12 83b101f 90012de 83b101f 90012de 83b101f 4b51c12 e7f1392 4b51c12 e7f1392 4b51c12 7e8b797 36c9228 4b51c12 e7f1392 4b51c12 e7f1392 4b51c12 e7f1392 4b51c12 83b101f 7e8b797 83b101f 4b51c12 83b101f 4b51c12 e7f1392 4b51c12 e7f1392 4b51c12 e7f1392 4b51c12 e7f1392 4b51c12 add6bc6 eaeaf35 2114e35 4b51c12 5c31036 4b51c12 33c27dc 5c31036 e3740b6 39f08bf e3740b6 d617a98 161f5a3 e3740b6 5c31036 161f5a3 e3740b6 5c31036 83b101f 5c31036 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 1718747 161f5a3 9e53d7b 18be79e 130163b 161f5a3 39f08bf 9e53d7b 2114e35 4b51c12 2114e35 4b51c12 2114e35 60fc789 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 200606d 2114e35 4b51c12 2114e35 4b51c12 e61dcfd 33c27dc 2114e35 4b51c12 2054de4 4b51c12 2054de4 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 2720196 4b51c12 1718747 7faf9f3 2114e35 c213376 7e8b797 e6bb43e ea2131c 5d572a7 145665d 20beb72 e6bb43e 145665d c3a6fbc 47b896d 2720196 eaeaf35 4c6c365 4b51c12 2720196 4b51c12 2114e35 20beb72 4b51c12 2114e35 ac28e38 200606d 2114e35 4b51c12 295aea0 7472d80 2114e35 a4fb93f 4b51c12 2114e35 4b51c12 2114e35 553d273 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 4b51c12 60fc789 ed58370 5840761 8928c58 5c31036 2114e35 4b51c12 2720196 4b51c12 5840761 2720196 2114e35 4b51c12 1a3a31f 4b51c12 2114e35 4b51c12 60fc789 4b51c12 553d273 eaeaf35 4c6c365 4b51c12 4c6c365 4b51c12 2720196 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 4b51c12 4c6c365 4b51c12 2720196 4b51c12 2720196 4b51c12 2114e35 c6080e4 2114e35 4b51c12 c6080e4 4b51c12 2114e35 4b51c12 c6080e4 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 4b51c12 c6080e4 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 2720196 2114e35 4b51c12 2114e35 4b51c12 4c6c365 f1ad00c 4b51c12 4c6c365 2720196 4b51c12 2114e35 4b51c12 2114e35 2720196 4b51c12 2114e35 4b51c12 413618e 2114e35 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2720196 2114e35 4b51c12 55b8c49 a9df8f7 55b8c49 2114e35 55b8c49 2114e35 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2720196 2114e35 4b51c12 2114e35 4c6c365 2114e35 4b51c12 2114e35 4b51c12 2114e35 2720196 2114e35 4b51c12 2114e35 2720196 2114e35 4b51c12 4c6c365 2720196 4b51c12 2720196 2114e35 4b51c12 2114e35 4b51c12 2720196 2114e35 2720196 4b51c12 2114e35 4c6c365 4b51c12 2720196 7118f9e 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 413618e 4b51c12 2114e35 4b51c12 2114e35 4b51c12 200606d 4b51c12 2114e35 4b51c12 2114e35 4b51c12 2114e35 90012de add6bc6 90012de 4b51c12 2720196 2114e35 2720196 2114e35 2720196 2114e35 c213376 2114e35 c213376 2114e35 2720196 4b51c12 2720196 2114e35 2720196 2114e35 52f0f4a 54385bf 2114e35 2720196 2114e35 4b51c12 2114e35 2720196 413618e 4b51c12 413618e 2114e35 2720196 2114e35 2720196 7f3c58e 4b51c12 2114e35 2720196 bddac17 3808658 bddac17 9e65d57 b7e98dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 |
import gradio as gr
from pydub import AudioSegment
import json
import uuid
import edge_tts
import asyncio
import aiofiles
import os
import time
import torch
import re
from typing import List, Dict, Optional
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import PyPDF2
import traceback
import os
import shutil
from pathlib import Path
model_subdir = Path.home() / ".cache" / "huggingface" / "hub" / "models--unsloth--Llama-3.2-3B"
# Enable persistent caching on Hugging Face Spaces (if persistent storage is enabled)
os.environ["TRANSFORMERS_CACHE"] = "/data/models"
#from git import Repo
#Repo.clone_from("https://huggingface.co/unsloth/Llama-3.2-3B-bnb-4bit", "./local_model_dir")
# Constants
MAX_FILE_SIZE_MB = 20
MAX_FILE_SIZE_BYTES = MAX_FILE_SIZE_MB * 1024 * 1024
MODEL_ID = "meta-llama/Meta-Llama-3-8B" #unsloth/Llama-3.2-3B" #meta-llama/Meta-Llama-3-8B"# unsloth/Llama-3.2-3B"#meta-llama/Meta-Llama-3-8B" #"unsloth/Llama-4-Scout-17B-16E-Instruct-GGUF"# unsloth/Qwen2.5-1.5B" #unsloth/Llama-3.2-3B" #unsloth/Llama-3.2-1B"
glotoken = os.environ.get("Tokentest")
# Global logging system -
logs = []
def add_log(message):
"""Thread-safe logging function"""
logs.append(f"[{time.strftime('%H:%M:%S')}] {message}")
print(message)
# Initialize model with comprehensive error handling
model = None
tokenizer = None
generation_config = None
def test_llm_generation():
try:
test_prompt = "Hello, how are you today?"
inputs = tokenizer(test_prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=10,
do_sample=False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
add_log(f"π§ͺ Test LLM response: {result[:100]}")
except Exception as e:
add_log(f"β LLM quick test failed: {e}")
def initialize_model():
global model, tokenizer, generation_config
try:
add_log("π Initializing model...")
tokenizer = AutoTokenizer.from_pretrained(
MODEL_ID,
cache_dir="/data/models",
token=glotoken,
trust_remote_code=True,
use_fast=False
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
add_log("β
Set pad_token to eos_token")
# Force GPU settings
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
cache_dir="/data/models",
trust_remote_code=True,
token=glotoken,
device_map={"": 0}, # <- force GPU:0
low_cpu_mem_usage=True
)
# model = AutoModelForCausalLM.from_pretrained(
# MODEL_ID,
# cache_dir="/data/models",
# trust_remote_code=True
# )
model.eval()
generation_config = GenerationConfig(
max_new_tokens=4096,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=1.1,
length_penalty=1.0
)
add_log(f"β
Model loaded successfully on device: {model.device}")
return True
except Exception as e:
error_msg = f"β Model initialization failed: {str(e)}"
add_log(error_msg)
add_log(f"Traceback: {traceback.format_exc()}")
return False
except Exception as e:
error_msg = f"β Model initialization failed: {str(e)}"
add_log(error_msg)
add_log(f"Traceback: {traceback.format_exc()}")
return False
# Initialize model at startup
model_loaded = initialize_model()
class PodcastGenerator:
def __init__(self):
self.model = model
self.tokenizer = tokenizer
self.generation_config = generation_config
def extract_text_from_pdf(self, file_path: str) -> str:
"""Extract text from PDF file - CRITICAL FIX #3"""
try:
add_log(f"π Extracting text from PDF: {file_path}")
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page_num, page in enumerate(pdf_reader.pages):
try:
page_text = page.extract_text()
text += page_text + "\n"
add_log(f"β
Extracted page {page_num + 1}")
except Exception as e:
add_log(f"β οΈ Failed to extract page {page_num + 1}: {e}")
continue
if not text.strip():
raise Exception("No text could be extracted from PDF")
add_log(f"β
PDF extraction complete. Text length: {len(text)} characters")
return text.strip()
except Exception as e:
error_msg = f"β PDF extraction failed: {str(e)}"
add_log(error_msg)
raise Exception(error_msg)
async def postprocess_conversation(self, raw_text: str) -> str:
"""Run LLM again to enforce strict Speaker 1/2 format"""
prompt = f"""
You are a podcast formatter.
You just reformat text as if two persons have a conversation
- Every line begins with exactly and strictily with `Speaker 1:` or `Speaker 2:` (with colon)
- No timestamps, no names, no parentheses, no extra formatting, no chapter names, no special characters beside ":"
- No blank lines allowed
- Do not invent or change the content, do not add or use -any- person or speaker names, chapeter names , time stamps etc
- you are not allowed to use anywhere in the text the character +#-*<>"()[]
Example output - you have to follow this structure:
Speaker 1: Hello and welcome.
Speaker 2: Thanks! Glad to be here.
Speaker 1: ...
Speaker 2: ...
Speaker 1: ...
Speaker 2: ...
Now format the following according to above instructions
{raw_text}
"""
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=2048
)
inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
#inputs = {k: v for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=1024,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id
)
formatted = self.tokenizer.decode(
outputs[0][inputs['input_ids'].shape[1]:],
skip_special_tokens=True
)
return formatted.strip()
def clean_and_validate_json(self, text: str) -> Dict:
"""Improved JSON extraction and validation - CRITICAL FIX #4"""
add_log("π Attempting to extract JSON from generated text")
# Multiple strategies for JSON extraction
strategies = [
# Strategy 1: Look for complete JSON objects
r'\{[^{}]*"topic"[^{}]*"podcast"[^{}]*\[[^\]]*\][^{}]*\}',
# Strategy 2: More flexible pattern
r'\{.*?"topic".*?"podcast".*?\[.*?\].*?\}',
# Strategy 3: Extract content between first { and last }
r'\{.*\}'
]
for i, pattern in enumerate(strategies):
add_log(f"π― Trying extraction strategy {i+1}")
matches = re.findall(pattern, text, re.DOTALL | re.IGNORECASE)
for match in matches:
try:
# Clean the match
cleaned = match.strip()
# Fix common JSON issues
cleaned = re.sub(r',\s*}', '}', cleaned) # Remove trailing commas
cleaned = re.sub(r',\s*]', ']', cleaned) # Remove trailing commas in arrays
parsed = json.loads(cleaned)
# Validate structure
if self.validate_podcast_structure(parsed):
add_log("β
Valid JSON structure found")
return parsed
except json.JSONDecodeError as e:
add_log(f"β οΈ JSON parse error in strategy {i+1}: {e}")
continue
add_log("β οΈ No valid JSON found, creating fallback")
return self.create_fallback_podcast(text)
def normalize_speaker_lines(self,text: str) -> str:
"""Normalize lines to 'Speaker 1: text' format based on presence of 1 or 2 and a ':' or '-'."""
# Convert markdown and bracketed formats to 'Speaker X: ...'
text = re.sub(
r'(?i)^.*?([12])[^a-zA-Z0-9]*[:\-]\s*',
lambda m: f"Speaker {m.group(1)}: ",
text,
flags=re.MULTILINE
)
return text
def conversation_to_json(self, text: str) -> Dict:
"""Convert speaker-formatted text to podcast JSON structure"""
# Allow leading whitespace and enforce full line match
"""Convert speaker-formatted text to podcast JSON structure"""
text = self.normalize_speaker_lines(text)
# Match strict "Speaker X: ..." lines only
lines = re.findall(r'^Speaker\s+([12]):\s*(.+)', text, flags=re.MULTILINE)
podcast = [{"speaker": int(s), "line": l.strip()} for s, l in lines]
return {
"topic": "Generated from Input",
"podcast": podcast
}
def validate_podcast_structure(self, data: Dict) -> bool:
"""Validate podcast JSON structure"""
try:
if not isinstance(data, dict):
return False
if 'topic' not in data or 'podcast' not in data:
return False
if not isinstance(data['podcast'], list):
return False
for item in data['podcast']:
if not isinstance(item, dict):
return False
if 'speaker' not in item or 'line' not in item:
return False
if not isinstance(item['speaker'], int) or item['speaker'] not in [1, 2]:
return False
if not isinstance(item['line'], str) or len(item['line'].strip()) == 0:
return False
return len(data['podcast']) > 0
except Exception:
return False
def create_fallback_podcast(self, text: str) -> Dict:
"""Create fallback podcast structure - IMPROVED"""
add_log("π§ Creating fallback podcast structure")
# Extract meaningful content from the original text
sentences = [s.strip() for s in text.split('.') if len(s.strip()) > 20]
if not sentences:
add_log("π§ failed sentences creating, fallback standard text")
sentences = [
"Welcome to our podcast discussion",
"Today we're exploring an interesting topic",
"Let's dive into the key points",
"That's a fascinating perspective",
"What are your thoughts on this matter",
"I think there are multiple angles to consider",
"This is definitely worth exploring further",
"Thank you for this engaging conversation"
]
# Create balanced conversation
podcast_lines = []
for i, sentence in enumerate(sentences[:12]): # Limit to 12 exchanges
speaker = (i % 2) + 1
line = sentence + "." if not sentence.endswith('.') else sentence
podcast_lines.append({
"speaker": speaker,
"line": line
})
result = {
"topic": "Generated Discussion",
"podcast": podcast_lines
}
add_log(f"β
Fallback podcast created with {len(podcast_lines)} lines")
return result
async def generate_script(self, prompt: str, language: str, file_obj=None, progress=None) -> Dict:
"""Improved script generation with better error handling"""
if not model_loaded or not self.model or not self.tokenizer:
raise Exception("β Model not properly initialized. Please restart the application.")
add_log("π¬ Starting script generation")
# Process file if provided - CRITICAL FIX #5
if file_obj is not None:
try:
add_log(f"π Processing uploaded file: {file_obj}")
if file_obj.endswith('.pdf'):
extracted_text = self.extract_text_from_pdf(file_obj)
# Truncate if too long
if len(extracted_text) > 2000:
extracted_text = extracted_text[:2000] + "..."
add_log("βοΈ Text truncated to 2000 characters")
prompt = extracted_text
elif file_obj.endswith('.txt'):
with open(file_obj, 'r', encoding='utf-8') as f:
file_content = f.read()
if len(file_content) > 2000:
file_content = file_content[:2000] + "..."
prompt = file_content
except Exception as e:
add_log(f"β οΈ File processing error: {e}")
# Continue with original prompt
# Create focused prompt - CRITICAL FIX #6
example_json = {
"topic": "AI Technology",
"podcast": [
{"speaker": 1, "line": "Welcome to our discussion about AI technology."},
{"speaker": 2, "line": "Thanks for having me. This is such an exciting field."},
{"speaker": 1, "line": "What aspects of AI do you find most interesting?"},
{"speaker": 2, "line": "I'm particularly fascinated by machine learning applications."}
]
}
# Simplified and more reliable prompt
system_prompt = f"""Create a podcast script
Requirements:
- Exactly two speakers: Speaker 1 and Speaker 2
- The podcast should fill 4-5 minutes, focusing on the core context of the input text
- DO NOT copy the example below , only use it as conversation reference
- The podcast should be professional, lively, witty and engaging, and hook the listener from the start.
- The input text might be disorganized or unformatted. Ignore any formatting inconsistencies or irrelevant details; your task is to distill the essential points,
{{
"topic": "Short and engaging title",
"podcast": [
{{"speaker": 1, "line": "Welcome to the podcast."}},
{{"speaker": 2, "line": "Thank you, great to be here."}},
{{"speaker": 1, "line": "..."}},
{{"speaker": 2, "line": "..."}}
]
}}
Return only valid JSON. Do not include explanation, markdown, or comments.
"""
#Example JSON structure:
#{json.dumps(example_json, indent=2)}
#user_prompt = f"\nInput Text:\n{prompt}\n\nPodcast Script:" #user_prompt = user_prompt = f"\nInput Text:\n{prompt}\n\nJSON:"# f"\nTopic: {prompt}\nJSON:"
user_prompt = f"\nInput Text:\n{prompt}\n\nJSON:"
full_prompt = system_prompt + user_prompt
add_log("π Prompt Preview:\n" + full_prompt[:2000])
try:
if progress:
progress(0.3, "π€ Generating script...")
add_log("π€ Tokenizing input...")
# Tokenize with proper handling
inputs = self.tokenizer(
full_prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=1200, # Reduced for stability
return_attention_mask=True
)
# Move to correct device
inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
add_log(f"β
Inputs moved to device: ")
add_log("selfπ§ Generating with model...")
# Generate with timeout and better parameters
with torch.no_grad():
torch.cuda.empty_cache() if torch.cuda.is_available() else None
outputs = self.model.generate(
**inputs,
generation_config=self.generation_config,
pad_token_id=self.tokenizer.pad_token_id,
# attention_mask=inputs.get('attention_mask'),
use_cache=True
)
add_log("β
Model generation complete")
# Decode only new tokens
generated_text = self.tokenizer.decode(
outputs[0][inputs['input_ids'].shape[1]:],
skip_special_tokens=True,
clean_up_tokenization_spaces=True
)
add_log(f"π Generated text length: {len(generated_text)} characters")
add_log(f"π Generated text preview: {generated_text[:2000]}...")
#formatted_text = await self.postprocess_conversation(generated_text)
#add_log(f"π§Ό Post-processed text:\n{formatted_text[:2000]}")
if progress:
progress(0.4, "π Processing generated script...")
# Extract and validate JSON
result = self.clean_and_validate_json(generated_text)
#result = self.conversation_to_json(formatted_text)
if progress:
progress(0.5, "β
Script generated successfully!")
add_log(f"π Full generated text:\n{generated_text}")
add_log(f"β
Final script has {len(result.get('podcast', []))} lines")
return result
except Exception as e:
error_msg = f"β Script generation error: {str(e)}"
add_log(error_msg)
add_log(f"π failed script creation")
add_log(f"π Traceback: {traceback.format_exc()}")
# Return robust fallback
return self.create_fallback_podcast("Welcome to our podcast")
async def tts_generate(self, text: str, speaker: int, speaker1: str, speaker2: str) -> str:
"""Improved TTS generation with better error handling - CRITICAL FIX #7"""
voice = speaker1 if speaker == 1 else speaker2
add_log(f"ποΈ Generating TTS for speaker {speaker} with voice {voice}")
# Clean text for TTS
text = text.strip()
if not text:
raise Exception("Empty text for TTS")
# Remove problematic characters
text = re.sub(r'[^\w\s.,!?;:\-\'"()]', '', text)
temp_filename = f"temp_audio_{uuid.uuid4().hex[:8]}.wav"
max_retries = 3
for attempt in range(max_retries):
try:
add_log(f"π΅ TTS attempt {attempt + 1} for: {text[:50]}...")
communicate = edge_tts.Communicate(text, voice)
# Use asyncio.wait_for with timeout
await asyncio.wait_for(
communicate.save(temp_filename),
timeout=30.0
)
# Verify file was created and has content
if os.path.exists(temp_filename) and os.path.getsize(temp_filename) > 1000:
add_log(f"β
TTS successful: {os.path.getsize(temp_filename)} bytes")
return temp_filename
else:
raise Exception("Generated audio file is too small or empty")
except asyncio.TimeoutError:
add_log(f"β° TTS timeout on attempt {attempt + 1}")
if os.path.exists(temp_filename):
os.remove(temp_filename)
if attempt == max_retries - 1:
raise Exception("TTS generation timed out after multiple attempts")
await asyncio.sleep(2)
except Exception as e:
add_log(f"β TTS error on attempt {attempt + 1}: {str(e)}")
if os.path.exists(temp_filename):
os.remove(temp_filename)
if attempt == max_retries - 1:
raise Exception(f"TTS generation failed after {max_retries} attempts: {str(e)}")
await asyncio.sleep(2)
async def combine_audio_files(self, audio_files: List[str], progress=None) -> str:
"""Improved audio combination - CRITICAL FIX #8"""
if progress:
progress(0.9, "π΅ Combining audio files...")
add_log(f"π Combining {len(audio_files)} audio files")
try:
combined_audio = AudioSegment.empty()
silence_padding = AudioSegment.silent(duration=800) # 800ms silence
for i, audio_file in enumerate(audio_files):
try:
add_log(f"π Processing audio file {i+1}: {audio_file}")
if not os.path.exists(audio_file):
add_log(f"β οΈ Audio file not found: {audio_file}")
continue
file_size = os.path.getsize(audio_file)
add_log(f"π File size: {file_size} bytes")
if file_size < 2000:
add_log(f"β οΈ 1 Audio file too small, skipping: {audio_file}")
continue
audio_segment = AudioSegment.from_file(audio_file)
if len(audio_segment) < 500: # Less than 100ms
add_log(f"β οΈ 2 Audio segment too short, skipping")
continue
combined_audio += audio_segment
# Add silence between speakers (except for the last file)
if i < len(audio_files) - 1:
combined_audio += silence_padding
add_log(f"β
Added audio segment {i+1}, total duration: {len(combined_audio)}ms")
except Exception as e:
add_log(f"β οΈ Could not process audio file {audio_file}: {e}")
continue
finally:
# Clean up temporary file
try:
if os.path.exists(audio_file):
os.remove(audio_file)
add_log(f"ποΈ Cleaned up temp file: {audio_file}")
except:
pass
if len(combined_audio) == 0:
raise Exception("No valid audio content was generated")
if len(combined_audio) < 5000: # Less than 5 seconds
raise Exception("3 Combined audio is too short")
output_filename = f"podcast_output_{uuid.uuid4().hex[:8]}.wav"
combined_audio.export(output_filename, format="wav")
file_size = os.path.getsize(output_filename)
duration = len(combined_audio) / 1000 # Duration in seconds
add_log(f"β
Final podcast: {output_filename} ({file_size} bytes, {duration:.1f}s)")
if progress:
progress(1.0, "π Podcast generated successfully!")
return output_filename
except Exception as e:
error_msg = f"β Audio combination failed: {str(e)}"
add_log(error_msg)
# Clean up any remaining temp files
for audio_file in audio_files:
try:
if os.path.exists(audio_file):
os.remove(audio_file)
except:
pass
raise Exception(error_msg)
async def generate_podcast(self, input_text: str, language: str, speaker1: str, speaker2: str, file_obj=None, progress=None) -> str:
"""Main podcast generation pipeline - CRITICAL FIX #9"""
start_time = time.time()
add_log("π¬ Starting podcast generation pipeline")
try:
if progress:
progress(0.1, "π Starting podcast generation...")
# Generate script
add_log("π Generating podcast script...")
podcast_json = await self.generate_script(input_text, language, file_obj, progress)
if not podcast_json.get('podcast') or len(podcast_json['podcast']) == 0:
raise Exception("No podcast content was generated")
add_log(f"β
Script generated with {len(podcast_json['podcast'])} dialogue lines")
if progress:
progress(0.5, "ποΈ Converting text to speech...")
# Generate TTS with proper error handling
audio_files = []
total_lines = len(podcast_json['podcast'])
successful_lines = 0
for i, item in enumerate(podcast_json['podcast']):
try:
add_log(f"π΅ Processing line {i+1}/{total_lines}: Speaker {item['speaker']}")
clean_line = item['line']
# π§ Sanitize malformed lines
if not isinstance(clean_line, str) or len(clean_line.strip()) == 0 or clean_line.strip().startswith('"') or "{" in clean_line:
add_log(f"β οΈ Malformed line detected for speaker {item['speaker']}: {repr(clean_line[:80])}")
# Try to recover from JSON-like noise
candidates = re.findall(r'\"line\"\s*:\s*\"([^\"]+)\"', clean_line)
if candidates:
clean_line = candidates[0]
add_log(f"β
Recovered line: {clean_line}")
else:
# Fallback: strip bad characters
clean_line = re.sub(r'[^A-Za-z0-9\s.,!?;:\-\'"]+', '', clean_line)
add_log(f"π οΈ Cleaned fallback line: {clean_line}")
audio_file = await self.tts_generate(
clean_line,
#item['line'],
item['speaker'],
speaker1,
speaker2
)
audio_files.append(audio_file)
successful_lines += 1
# Update progress
if progress:
current_progress = 0.5 + (0.4 * (i + 1) / total_lines)
progress(current_progress, f"ποΈ Generated speech {successful_lines}/{total_lines}")
except Exception as e:
add_log(f"β TTS failed for line {i+1}: {e}")
# Continue with remaining lines rather than failing completely
continue
if not audio_files:
raise Exception("No audio files were generated successfully")
if successful_lines < len(podcast_json['podcast']) / 2:
add_log(f"β οΈ Warning: Only {successful_lines}/{total_lines} lines processed successfully")
add_log(f"β
TTS generation complete: {len(audio_files)} audio files")
# Combine audio files
combined_audio = await self.combine_audio_files(audio_files, progress)
elapsed_time = time.time() - start_time
add_log(f"π Podcast generation completed in {elapsed_time:.1f} seconds")
return combined_audio
except Exception as e:
elapsed_time = time.time() - start_time
error_msg = f"β Podcast generation failed after {elapsed_time:.1f}s: {str(e)}"
add_log(error_msg)
add_log(f"π Full traceback: {traceback.format_exc()}")
raise Exception(error_msg)
# Voice mapping
VOICE_MAPPING = {
"Andrew - English (United States)": "en-US-AndrewMultilingualNeural",
"Ava - English (United States)": "en-US-AvaMultilingualNeural",
"Brian - English (United States)": "en-US-BrianMultilingualNeural",
"Emma - English (United States)": "en-US-EmmaMultilingualNeural",
"Florian - German (Germany)": "de-DE-FlorianMultilingualNeural",
"Seraphina - German (Germany)": "de-DE-SeraphinaMultilingualNeural",
"Remy - French (France)": "fr-FR-RemyMultilingualNeural",
"Vivienne - French (France)": "fr-FR-VivienneMultilingualNeural"
}
async def process_input(input_text: str, input_file, language: str, speaker1: str, speaker2: str, progress=None) -> str:
"""Process input and generate podcast - MAIN ENTRY POINT"""
add_log("=" * 50)
add_log("π¬ NEW PODCAST GENERATION REQUEST")
add_log("=" * 50)
try:
if progress:
progress(0.05, "π Processing input...")
# Map speaker names to voice IDs
speaker1_voice = VOICE_MAPPING.get(speaker1, "en-US-AndrewMultilingualNeural")
speaker2_voice = VOICE_MAPPING.get(speaker2, "en-US-AvaMultilingualNeural")
add_log(f"π Speaker 1: {speaker1} -> {speaker1_voice}")
add_log(f"π Speaker 2: {speaker2} -> {speaker2_voice}")
# Validate input
if not input_text or input_text.strip() == "":
if input_file is None:
raise Exception("β Please provide either text input or upload a file")
add_log("π No text input provided, will process uploaded file")
else:
add_log(f"π Text input provided: {len(input_text)} characters")
if input_file:
add_log(f"π File uploaded: {input_file}")
# Check model status
if not model_loaded:
raise Exception("β Model not loaded. Please restart the application.")
podcast_generator = PodcastGenerator()
result = await podcast_generator.generate_podcast(
input_text, language, speaker1_voice, speaker2_voice, input_file, progress
)
add_log("π PODCAST GENERATION COMPLETED SUCCESSFULLY")
return result
except Exception as e:
error_msg = f"β CRITICAL ERROR: {str(e)}"
add_log(error_msg)
add_log(f"π Traceback: {traceback.format_exc()}")
raise Exception(error_msg)
def generate_podcast_gradio(input_text, input_file, language, speaker1, speaker2):
"""Gradio interface function - CRITICAL FIX #10"""
global logs
logs = [] # Reset logs for each generation
try:
add_log("π¬ Gradio function called")
add_log(f"π Parameters: text={bool(input_text)}, file={bool(input_file)}, lang={language}")
# Validate inputs
if not input_text and input_file is None:
add_log("β No input provided")
return None, "\n".join(logs)
if input_text and len(input_text.strip()) == 0:
input_text = None
# Progress tracking
def progress_callback(value, text):
add_log(f"π Progress: {value:.1%} - {text}")
# Create new event loop for this request - CRITICAL FIX
try:
# Try to get existing loop
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
if loop.is_running():
# If loop is running, we need to run in thread
import concurrent.futures
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(
lambda: asyncio.run(
process_input(input_text, input_file, language, speaker1, speaker2, progress_callback)
)
)
result = future.result(timeout=300) # 5 minute timeout
else:
result = loop.run_until_complete(
process_input(input_text, input_file, language, speaker1, speaker2, progress_callback)
)
except RuntimeError:
# No event loop exists, create new one
result = asyncio.run(
process_input(input_text, input_file, language, speaker1, speaker2, progress_callback)
)
add_log("β
Gradio function completed successfully")
return result, "\n".join(logs)
except Exception as e:
error_msg = f"β Gradio function error: {str(e)}"
add_log(error_msg)
add_log(f"π Traceback: {traceback.format_exc()}")
return None, "\n".join(logs)
def create_interface():
#model_loaded = initialize_model()
if model_loaded:
test_llm_generation()
"""Create the Gradio interface"""
language_options = [
"Auto Detect", "English", "German", "French", "Spanish", "Italian",
"Portuguese", "Dutch", "Russian", "Chinese", "Japanese", "Korean"
]
voice_options = list(VOICE_MAPPING.keys())
with gr.Blocks(
title="Pasching Podcast 2ποΈ",
theme=gr.themes.Soft(),
css=".gradio-container {max-width: 1200px; margin: auto;}"
) as demo:
gr.Markdown("# ποΈ Pasching Podcast 2")
gr.Markdown("Generate professional 2-speaker podcasts from text input!")
# Model status indicator
if model_loaded:
gr.Markdown("β
**Model Status: Ready**")
else:
gr.Markdown("β **Model Status: Failed to Load**")
with gr.Row():
with gr.Column(scale=2):
input_text = gr.Textbox(
label="Input Text",
lines=8,
placeholder="Enter your topic or text for podcast generation...",
info="Describe what you want the podcast to discuss"
)
with gr.Column(scale=1):
input_file = gr.File(
label="Upload File (Optional)",
file_types=[".pdf", ".txt"],
type="filepath",
#info=f"Max size: {MAX_FILE_SIZE_MB}MB"
)
with gr.Row():
language = gr.Dropdown(
label="Language",
choices=language_options,
value="Auto Detect",
info="Select output language"
)
speaker1 = gr.Dropdown(
label="Speaker 1 Voice",
choices=voice_options,
value="Andrew - English (United States)"
)
speaker2 = gr.Dropdown(
label="Speaker 2 Voice",
choices=voice_options,
value="Ava - English (United States)"
)
generate_btn = gr.Button(
"ποΈ Generate Podcast",
variant="primary",
size="lg",
interactive=model_loaded
)
log_output = gr.Textbox(
label="πͺ΅ Debug & Transcript Log",
lines=15,
interactive=False,
info="Real-time generation logs and debugging information"
)
output_audio = gr.Audio(
label="Generated Podcast",
type="filepath",
format="wav",
show_download_button=True
)
# Connect the interface
generate_btn.click(
fn=generate_podcast_gradio,
inputs=[input_text, input_file, language, speaker1, speaker2],
outputs=[output_audio, log_output],
show_progress=True
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=False
)
|