Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -69,6 +69,7 @@ def initialize_model():
|
|
69 |
|
70 |
tokenizer = AutoTokenizer.from_pretrained(
|
71 |
MODEL_ID,
|
|
|
72 |
trust_remote_code=True,
|
73 |
use_fast=False
|
74 |
)
|
@@ -81,6 +82,7 @@ def initialize_model():
|
|
81 |
model = AutoModelForCausalLM.from_pretrained(
|
82 |
MODEL_ID,
|
83 |
torch_dtype=torch.float16,
|
|
|
84 |
trust_remote_code=True,
|
85 |
device_map={"": 0}, # <- force GPU:0
|
86 |
low_cpu_mem_usage=True
|
@@ -314,7 +316,7 @@ class PodcastGenerator:
|
|
314 |
|
315 |
Requirements:
|
316 |
- Exactly two speakers: Speaker 1 and Speaker 2
|
317 |
-
- The podcast should
|
318 |
- DO NOT copy the example below , only use it as conversation reference
|
319 |
- The podcast should be professional, in-depth, lively, witty and engaging, and hook the listener from the start.
|
320 |
- The input text might be disorganized or unformatted. Ignore any formatting inconsistencies or irrelevant details; your task is to distill the essential points,
|
|
|
69 |
|
70 |
tokenizer = AutoTokenizer.from_pretrained(
|
71 |
MODEL_ID,
|
72 |
+
cache_dir="/data/models",
|
73 |
trust_remote_code=True,
|
74 |
use_fast=False
|
75 |
)
|
|
|
82 |
model = AutoModelForCausalLM.from_pretrained(
|
83 |
MODEL_ID,
|
84 |
torch_dtype=torch.float16,
|
85 |
+
cache_dir="/data/models",
|
86 |
trust_remote_code=True,
|
87 |
device_map={"": 0}, # <- force GPU:0
|
88 |
low_cpu_mem_usage=True
|
|
|
316 |
|
317 |
Requirements:
|
318 |
- Exactly two speakers: Speaker 1 and Speaker 2
|
319 |
+
- The podcast should fill 4-5 minutes, focusing on the core context of the input text
|
320 |
- DO NOT copy the example below , only use it as conversation reference
|
321 |
- The podcast should be professional, in-depth, lively, witty and engaging, and hook the listener from the start.
|
322 |
- The input text might be disorganized or unformatted. Ignore any formatting inconsistencies or irrelevant details; your task is to distill the essential points,
|