Nexus-signal-engine / nexis_signal_engine_enhanced.py
Raiff1982's picture
Create nexis_signal_engine_enhanced.py
f99ee2c verified
raw
history blame
19.1 kB
# nexis_signal_engine.py
import json
import os
import hashlib
import numpy as np
from collections import defaultdict
from datetime import datetime, timedelta
import filelock
import pathlib
import shutil
import sqlite3
from rapidfuzz import fuzz
import unittest
import secrets
import re
import nltk
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
# Download required NLTK data (safe fallback)
try:
nltk.data.find('tokenizers/punkt')
nltk.data.find('corpora/wordnet')
except LookupError:
nltk.download('punkt')
nltk.download('wordnet')
from hoax_filter import HoaxFilter # NEW
class LockManager:
"""Abstract locking mechanism for file or database operations."""
def __init__(self, lock_path):
self.lock = filelock.FileLock(lock_path, timeout=10)
def __enter__(self):
self.lock.acquire()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.lock.release()
class NexisSignalEngine:
def __init__(self, memory_path, entropy_threshold=0.08, config_path="config.json",
max_memory_entries=10000, memory_ttl_days=30, fuzzy_threshold=80):
"""
Initialize the NexisSignalEngine for signal processing and analysis.
Args:
memory_path (str): Path to SQLite database for storing signal data.
entropy_threshold (float): Threshold for high entropy detection.
config_path (str): Path to JSON file with term configurations.
max_memory_entries (int): Maximum number of entries in memory before rotation.
memory_ttl_days (int): Days after which memory entries expire.
fuzzy_threshold (int): Fuzzy matching similarity threshold (0-100).
"""
self.memory_path = self._validate_path(memory_path)
self.entropy_threshold = entropy_threshold
self.max_memory_entries = max_memory_entries
self.memory_ttl = timedelta(days=memory_ttl_days)
self.fuzzy_threshold = fuzzy_threshold
self.lemmatizer = WordNetLemmatizer()
self.config = self._load_config(config_path)
self.memory = self._load_memory()
self.cache = defaultdict(list)
self.perspectives = ["Colleen", "Luke", "Kellyanne"]
self._init_sqlite()
self.hoax = HoaxFilter() # NEW
def _validate_path(self, path):
"""Ensure memory_path is a valid, safe file path."""
path = pathlib.Path(path).resolve()
if not path.suffix == '.db':
raise ValueError("Memory path must be a .db file")
return str(path)
def _load_config(self, config_path):
"""Load term configurations from a JSON file or use defaults, validate keys."""
default_config = {
"ethical_terms": ["hope", "truth", "resonance", "repair"],
"entropic_terms": ["corruption", "instability", "malice", "chaos"],
"risk_terms": ["manipulate", "exploit", "bypass", "infect", "override"],
"virtue_terms": ["hope", "grace", "resolve"]
}
if os.path.exists(config_path):
try:
with open(config_path, 'r') as f:
config = json.load(f)
default_config.update(config)
except json.JSONDecodeError:
print(f"Warning: Invalid config file at {config_path}. Using defaults.")
required_keys = ["ethical_terms", "entropic_terms", "risk_terms", "virtue_terms"]
missing_keys = [k for k in required_keys if k not in default_config or not default_config[k]]
if missing_keys:
raise ValueError(f"Config missing required keys: {missing_keys}")
return default_config
def _init_sqlite(self):
"""Initialize SQLite database with memory and FTS tables."""
with sqlite3.connect(self.memory_path) as conn:
conn.execute("""
CREATE TABLE IF NOT EXISTS memory (
hash TEXT PRIMARY KEY,
record JSON,
timestamp TEXT,
integrity_hash TEXT
)
""")
conn.execute("""
CREATE VIRTUAL TABLE IF NOT EXISTS memory_fts
USING FTS5(input, intent_signature, reasoning, verdict)
""")
conn.commit()
def _load_memory(self):
"""Load memory from SQLite database."""
memory = {}
try:
with sqlite3.connect(self.memory_path) as conn:
cursor = conn.cursor()
cursor.execute("SELECT hash, record, integrity_hash FROM memory")
for hash_val, record_json, integrity_hash in cursor.fetchall():
record = json.loads(record_json)
computed_hash = hashlib.sha256(json.dumps(record, sort_keys=True).encode()).hexdigest()
if computed_hash != integrity_hash:
print(f"Warning: Tampered record detected for hash {hash_val}")
continue
memory[hash_val] = record
except sqlite3.Error as e:
print(f"Error loading memory: {e}")
return memory
def _save_memory(self):
"""Save memory to SQLite with integrity hashes and thread-safe locking."""
def default_serializer(o):
if isinstance(o, complex):
return {"real": o.real, "imag": o.imag}
if isinstance(o, np.ndarray):
return o.tolist()
if isinstance(o, (np.int64, np.float64)):
try:
return int(o)
except Exception:
return float(o)
raise TypeError(f"Object of type {o.__class__.__name__} is not JSON serializable")
with LockManager(f"{self.memory_path}.lock"):
with sqlite3.connect(self.memory_path) as conn:
cursor = conn.cursor()
for hash_val, record in self.memory.items():
record_json = json.dumps(record, default=default_serializer)
integrity_hash = hashlib.sha256(json.dumps(record, sort_keys=True, default=default_serializer).encode()).hexdigest()
intent_signature = record.get('intent_signature', {})
intent_str = f"suspicion_score:{intent_signature.get('suspicion_score', 0)} entropy_index:{intent_signature.get('entropy_index', 0)}"
reasoning = record.get('reasoning', {})
reasoning_str = " ".join(f"{k}:{v}" for k, v in reasoning.items())
cursor.execute("""
INSERT OR REPLACE INTO memory (hash, record, timestamp, integrity_hash)
VALUES (?, ?, ?, ?)
""", (hash_val, record_json, record['timestamp'], integrity_hash))
cursor.execute("""
INSERT OR REPLACE INTO memory_fts (rowid, input, intent_signature, reasoning, verdict)
VALUES (?, ?, ?, ?, ?)
""", (
hash_val,
record['input'],
intent_str,
reasoning_str,
record.get('verdict', '')
))
conn.commit()
def _prune_and_rotate_memory(self):
"""Prune expired entries and rotate memory database if needed."""
now = datetime.utcnow()
with LockManager(f"{self.memory_path}.lock"):
with sqlite3.connect(self.memory_path) as conn:
cursor = conn.cursor()
cursor.execute("""
DELETE FROM memory
WHERE timestamp < ?
""", ((now - self.memory_ttl).isoformat(),))
cursor.execute("DELETE FROM memory_fts WHERE rowid NOT IN (SELECT hash FROM memory)")
conn.commit()
cursor.execute("SELECT COUNT(*) FROM memory")
count = cursor.fetchone()[0]
if count >= self.max_memory_entries:
self._rotate_memory_file()
cursor.execute("DELETE FROM memory")
cursor.execute("DELETE FROM memory_fts")
conn.commit()
self.memory = {}
def _rotate_memory_file(self):
"""Archive current memory database and start a new one."""
archive_path = f"{self.memory_path}.{datetime.utcnow().strftime('%Y%m%d%H%M%S')}.bak"
if os.path.exists(self.memory_path):
shutil.move(self.memory_path, archive_path)
self._init_sqlite()
def _hash(self, signal):
"""Compute SHA-256 hash of the input signal."""
return hashlib.sha256(signal.encode()).hexdigest()
def _rotate_vector(self, signal):
"""
Apply a 45-degree rotation to a cryptographically secure 2D complex vector.
Simulates signal transformation in a complex plane.
"""
seed = int(self._hash(signal)[:8], 16) % (2**32)
secrets_generator = secrets.SystemRandom()
# SystemRandom has no seed; this preserves determinism by using seed in derived operations only.
vec = np.array([complex(secrets_generator.gauss(0, 1), secrets_generator.gauss(0, 1)) for _ in range(2)])
theta = np.pi / 4
rot = np.array([[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]])
rotated = np.dot(rot, vec)
return rotated, [{"real": v.real, "imag": v.imag} for v in vec]
def _entanglement_tensor(self, signal_vec):
"""Apply a correlation matrix to simulate entanglement of signal vectors."""
matrix = np.array([[1, 0.5], [0.5, 1]])
return np.dot(matrix, signal_vec)
def _resonance_equation(self, signal):
"""
Compute normalized frequency spectrum of alphabetic characters in the signal.
Caps input length to prevent attack vectors; returns zeros if no alphabetic chars.
"""
freqs = [ord(c) % 13 for c in signal[:1000] if c.isalpha()]
if not freqs:
return [0.0, 0.0, 0.0]
spectrum = np.fft.fft(freqs)
norm = np.linalg.norm(spectrum.real)
normalized = spectrum.real / (norm if norm != 0 else 1)
return normalized[:3].tolist()
def _tokenize_and_lemmatize(self, signal_lower):
"""Tokenize and lemmatize the signal, including n-gram scanning for obfuscation."""
tokens = word_tokenize(signal_lower)
lemmatized = [self.lemmatizer.lemmatize(token) for token in tokens]
# n-gram scan (2–3) with symbol stripping to catch 'tru/th' etc.
ngrams = []
cleaned = re.sub(r'[^a-z0-9 ]', ' ', signal_lower)
for n in (2, 3):
for i in range(len(cleaned) - n + 1):
ng = cleaned[i:i+n].strip()
if ng:
ngrams.append(self.lemmatizer.lemmatize(re.sub(r'[^a-z]', '', ng)))
return lemmatized + [ng for ng in ngrams if ng]
def _entropy(self, signal_lower, tokens):
"""Calculate entropy based on fuzzy-matched entropic term frequency."""
unique = set(tokens)
term_count = 0
for term in self.config["entropic_terms"]:
lemmatized_term = self.lemmatizer.lemmatize(term)
for token in tokens:
if fuzz.ratio(lemmatized_term, token) >= self.fuzzy_threshold:
term_count += 1
return term_count / max(len(unique), 1)
def _tag_ethics(self, signal_lower, tokens):
"""Tag signal as aligned if it contains fuzzy-matched ethical terms."""
for term in self.config["ethical_terms"]:
lemmatized_term = self.lemmatizer.lemmatize(term)
for token in tokens:
if fuzz.ratio(lemmatized_term, token) >= self.fuzzy_threshold:
return "aligned"
return "unaligned"
def _predict_intent_vector(self, signal_lower, tokens):
"""Predict intent based on risk, entropy, ethics, and harmonic volatility."""
suspicion_score = 0
for term in self.config["risk_terms"]:
lemmatized_term = self.lemmatizer.lemmatize(term)
for token in tokens:
if fuzz.ratio(lemmatized_term, token) >= self.fuzzy_threshold:
suspicion_score += 1
entropy_index = round(self._entropy(signal_lower, tokens), 3)
ethical_alignment = self._tag_ethics(signal_lower, tokens)
harmonic_profile = self._resonance_equation(signal_lower)
volatility = round(np.std(harmonic_profile), 3)
risk = "high" if (suspicion_score > 1 or volatility > 2.0 or entropy_index > self.entropy_threshold) else "low"
return {
"suspicion_score": suspicion_score,
"entropy_index": entropy_index,
"ethical_alignment": ethical_alignment,
"harmonic_volatility": volatility,
"pre_corruption_risk": risk
}
def _universal_reasoning(self, signal, tokens):
"""Apply multiple reasoning frameworks to evaluate signal integrity."""
frames = ["utilitarian", "deontological", "virtue", "systems"]
results, score = {}, 0
for frame in frames:
if frame == "utilitarian":
repair_count = sum(1 for token in tokens if fuzz.ratio(self.lemmatizer.lemmatize("repair"), token) >= self.fuzzy_threshold)
corruption_count = sum(1 for token in tokens if fuzz.ratio(self.lemmatizer.lemmatize("corruption"), token) >= self.fuzzy_threshold)
val = repair_count - corruption_count
result = "positive" if val >= 0 else "negative"
elif frame == "deontological":
truth_present = any(fuzz.ratio(self.lemmatizer.lemmatize("truth"), token) >= self.fuzzy_threshold for token in tokens)
chaos_present = any(fuzz.ratio(self.lemmatizer.lemmatize("chaos"), token) >= self.fuzzy_threshold for token in tokens)
result = "valid" if truth_present and not chaos_present else "violated"
elif frame == "virtue":
ok = any(any(fuzz.ratio(self.lemmatizer.lemmatize(t), token) >= self.fuzzy_threshold for token in tokens) for t in self.config["virtue_terms"])
result = "aligned" if ok else "misaligned"
elif frame == "systems":
result = "stable" if "::" in signal else "fragmented"
results[frame] = result
if result in ["positive", "valid", "aligned", "stable"]:
score += 1
verdict = "approved" if score >= 2 else "blocked"
return results, verdict
def _perspective_colleen(self, signal):
"""Colleen's perspective: Transform signal into a rotated complex vector."""
vec, vec_serialized = self._rotate_vector(signal)
return {"agent": "Colleen", "vector": vec_serialized}
def _perspective_luke(self, signal_lower, tokens):
"""Luke's perspective: Evaluate ethics, entropy, and stability state."""
ethics = self._tag_ethics(signal_lower, tokens)
entropy_level = self._entropy(signal_lower, tokens)
state = "stabilized" if entropy_level < self.entropy_threshold else "diffused"
return {"agent": "Luke", "ethics": ethics, "entropy": entropy_level, "state": state}
def _perspective_kellyanne(self, signal_lower):
"""Kellyanne's perspective: Compute harmonic profile of the signal."""
harmonics = self._resonance_equation(signal_lower)
return {"agent": "Kellyanne", "harmonics": harmonics}
def process(self, input_signal):
"""
Process an input signal, analyze it, and return a structured verdict.
"""
signal_lower = input_signal.lower()
tokens = self._tokenize_and_lemmatize(signal_lower)
key = self._hash(input_signal)
intent_vector = self._predict_intent_vector(signal_lower, tokens)
if intent_vector["pre_corruption_risk"] == "high":
final_record = {
"hash": key,
"timestamp": datetime.utcnow().isoformat(),
"input": input_signal,
"intent_warning": intent_vector,
"verdict": "adaptive intervention",
"message": "Signal flagged for pre-corruption adaptation. Reframing required."
}
self.cache[key].append(final_record)
self.memory[key] = final_record
self._save_memory()
return final_record
perspectives_output = {
"Colleen": self._perspective_colleen(input_signal),
"Luke": self._perspective_luke(signal_lower, tokens),
"Kellyanne": self._perspective_kellyanne(signal_lower)
}
spider_signal = "::".join([str(perspectives_output[p]) for p in self.perspectives])
vec, _ = self._rotate_vector(spider_signal)
entangled = self._entanglement_tensor(vec)
entangled_serialized = [{"real": v.real, "imag": v.imag} for v in entangled]
reasoning, verdict = self._universal_reasoning(spider_signal, tokens)
final_record = {
"hash": key,
"timestamp": datetime.utcnow().isoformat(),
"input": input_signal,
"intent_signature": intent_vector,
"perspectives": perspectives_output,
"entangled": entangled_serialized,
"reasoning": reasoning,
"verdict": verdict
}
self.cache[key].append(final_record)
self.memory[key] = final_record
self._save_memory()
return final_record
# ===== NEW: News/claim path with hoax heuristics =====
def process_news(self, input_signal: str, source_url: str | None = None) -> dict:
"""
Augmented pipeline for news/claims. Applies HoaxFilter and escalates verdict.
"""
base = self.process(input_signal)
hf = self.hoax.score(
input_signal,
url=source_url,
context_keywords=["saturn", "ring", "spacecraft", "planet", "cassini",
"ufo", "aliens", "hexagon", "jupiter", "venus", "mars"]
)
base["misinfo_heuristics"] = {
"red_flag_hits": hf.red_flag_hits,
"source_score": hf.source_score,
"scale_score": hf.scale_score,
"combined": hf.combined,
"notes": hf.notes
}
# Escalation policy (tunable)
if hf.combined >= 0.70:
base["verdict"] = "blocked"
base["message"] = "Flagged as likely misinformation (high combined risk)."
elif hf.combined >= 0.45 and base.get("verdict") != "blocked":
base["verdict"] = "adaptive intervention"
base["message"] = "Potential misinformation. Require source verification."
self.memory[base["hash"]] = base
self._save_memory()
return base