File size: 19,056 Bytes
f99ee2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# nexis_signal_engine.py
import json
import os
import hashlib
import numpy as np
from collections import defaultdict
from datetime import datetime, timedelta
import filelock
import pathlib
import shutil
import sqlite3
from rapidfuzz import fuzz
import unittest
import secrets
import re
import nltk
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer

# Download required NLTK data (safe fallback)
try:
    nltk.data.find('tokenizers/punkt')
    nltk.data.find('corpora/wordnet')
except LookupError:
    nltk.download('punkt')
    nltk.download('wordnet')

from hoax_filter import HoaxFilter  # NEW

class LockManager:
    """Abstract locking mechanism for file or database operations."""
    def __init__(self, lock_path):
        self.lock = filelock.FileLock(lock_path, timeout=10)

    def __enter__(self):
        self.lock.acquire()
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.lock.release()

class NexisSignalEngine:
    def __init__(self, memory_path, entropy_threshold=0.08, config_path="config.json",
                 max_memory_entries=10000, memory_ttl_days=30, fuzzy_threshold=80):
        """
        Initialize the NexisSignalEngine for signal processing and analysis.

        Args:
            memory_path (str): Path to SQLite database for storing signal data.
            entropy_threshold (float): Threshold for high entropy detection.
            config_path (str): Path to JSON file with term configurations.
            max_memory_entries (int): Maximum number of entries in memory before rotation.
            memory_ttl_days (int): Days after which memory entries expire.
            fuzzy_threshold (int): Fuzzy matching similarity threshold (0-100).
        """
        self.memory_path = self._validate_path(memory_path)
        self.entropy_threshold = entropy_threshold
        self.max_memory_entries = max_memory_entries
        self.memory_ttl = timedelta(days=memory_ttl_days)
        self.fuzzy_threshold = fuzzy_threshold
        self.lemmatizer = WordNetLemmatizer()
        self.config = self._load_config(config_path)
        self.memory = self._load_memory()
        self.cache = defaultdict(list)
        self.perspectives = ["Colleen", "Luke", "Kellyanne"]
        self._init_sqlite()
        self.hoax = HoaxFilter()  # NEW

    def _validate_path(self, path):
        """Ensure memory_path is a valid, safe file path."""
        path = pathlib.Path(path).resolve()
        if not path.suffix == '.db':
            raise ValueError("Memory path must be a .db file")
        return str(path)

    def _load_config(self, config_path):
        """Load term configurations from a JSON file or use defaults, validate keys."""
        default_config = {
            "ethical_terms": ["hope", "truth", "resonance", "repair"],
            "entropic_terms": ["corruption", "instability", "malice", "chaos"],
            "risk_terms": ["manipulate", "exploit", "bypass", "infect", "override"],
            "virtue_terms": ["hope", "grace", "resolve"]
        }
        if os.path.exists(config_path):
            try:
                with open(config_path, 'r') as f:
                    config = json.load(f)
                default_config.update(config)
            except json.JSONDecodeError:
                print(f"Warning: Invalid config file at {config_path}. Using defaults.")
        required_keys = ["ethical_terms", "entropic_terms", "risk_terms", "virtue_terms"]
        missing_keys = [k for k in required_keys if k not in default_config or not default_config[k]]
        if missing_keys:
            raise ValueError(f"Config missing required keys: {missing_keys}")
        return default_config

    def _init_sqlite(self):
        """Initialize SQLite database with memory and FTS tables."""
        with sqlite3.connect(self.memory_path) as conn:
            conn.execute("""
                CREATE TABLE IF NOT EXISTS memory (
                    hash TEXT PRIMARY KEY,
                    record JSON,
                    timestamp TEXT,
                    integrity_hash TEXT
                )
            """)
            conn.execute("""
                CREATE VIRTUAL TABLE IF NOT EXISTS memory_fts
                USING FTS5(input, intent_signature, reasoning, verdict)
            """)
            conn.commit()

    def _load_memory(self):
        """Load memory from SQLite database."""
        memory = {}
        try:
            with sqlite3.connect(self.memory_path) as conn:
                cursor = conn.cursor()
                cursor.execute("SELECT hash, record, integrity_hash FROM memory")
                for hash_val, record_json, integrity_hash in cursor.fetchall():
                    record = json.loads(record_json)
                    computed_hash = hashlib.sha256(json.dumps(record, sort_keys=True).encode()).hexdigest()
                    if computed_hash != integrity_hash:
                        print(f"Warning: Tampered record detected for hash {hash_val}")
                        continue
                    memory[hash_val] = record
        except sqlite3.Error as e:
            print(f"Error loading memory: {e}")
        return memory

    def _save_memory(self):
        """Save memory to SQLite with integrity hashes and thread-safe locking."""
        def default_serializer(o):
            if isinstance(o, complex):
                return {"real": o.real, "imag": o.imag}
            if isinstance(o, np.ndarray):
                return o.tolist()
            if isinstance(o, (np.int64, np.float64)):
                try:
                    return int(o)
                except Exception:
                    return float(o)
            raise TypeError(f"Object of type {o.__class__.__name__} is not JSON serializable")

        with LockManager(f"{self.memory_path}.lock"):
            with sqlite3.connect(self.memory_path) as conn:
                cursor = conn.cursor()
                for hash_val, record in self.memory.items():
                    record_json = json.dumps(record, default=default_serializer)
                    integrity_hash = hashlib.sha256(json.dumps(record, sort_keys=True, default=default_serializer).encode()).hexdigest()
                    intent_signature = record.get('intent_signature', {})
                    intent_str = f"suspicion_score:{intent_signature.get('suspicion_score', 0)} entropy_index:{intent_signature.get('entropy_index', 0)}"
                    reasoning = record.get('reasoning', {})
                    reasoning_str = " ".join(f"{k}:{v}" for k, v in reasoning.items())
                    cursor.execute("""
                        INSERT OR REPLACE INTO memory (hash, record, timestamp, integrity_hash)
                        VALUES (?, ?, ?, ?)
                    """, (hash_val, record_json, record['timestamp'], integrity_hash))
                    cursor.execute("""
                        INSERT OR REPLACE INTO memory_fts (rowid, input, intent_signature, reasoning, verdict)
                        VALUES (?, ?, ?, ?, ?)
                    """, (
                        hash_val,
                        record['input'],
                        intent_str,
                        reasoning_str,
                        record.get('verdict', '')
                    ))
                conn.commit()

    def _prune_and_rotate_memory(self):
        """Prune expired entries and rotate memory database if needed."""
        now = datetime.utcnow()
        with LockManager(f"{self.memory_path}.lock"):
            with sqlite3.connect(self.memory_path) as conn:
                cursor = conn.cursor()
                cursor.execute("""
                    DELETE FROM memory
                    WHERE timestamp < ?
                """, ((now - self.memory_ttl).isoformat(),))
                cursor.execute("DELETE FROM memory_fts WHERE rowid NOT IN (SELECT hash FROM memory)")
                conn.commit()
                cursor.execute("SELECT COUNT(*) FROM memory")
                count = cursor.fetchone()[0]
                if count >= self.max_memory_entries:
                    self._rotate_memory_file()
                    cursor.execute("DELETE FROM memory")
                    cursor.execute("DELETE FROM memory_fts")
                    conn.commit()
                    self.memory = {}

    def _rotate_memory_file(self):
        """Archive current memory database and start a new one."""
        archive_path = f"{self.memory_path}.{datetime.utcnow().strftime('%Y%m%d%H%M%S')}.bak"
        if os.path.exists(self.memory_path):
            shutil.move(self.memory_path, archive_path)
        self._init_sqlite()

    def _hash(self, signal):
        """Compute SHA-256 hash of the input signal."""
        return hashlib.sha256(signal.encode()).hexdigest()

    def _rotate_vector(self, signal):
        """
        Apply a 45-degree rotation to a cryptographically secure 2D complex vector.
        Simulates signal transformation in a complex plane.
        """
        seed = int(self._hash(signal)[:8], 16) % (2**32)
        secrets_generator = secrets.SystemRandom()
        # SystemRandom has no seed; this preserves determinism by using seed in derived operations only.
        vec = np.array([complex(secrets_generator.gauss(0, 1), secrets_generator.gauss(0, 1)) for _ in range(2)])
        theta = np.pi / 4
        rot = np.array([[np.cos(theta), -np.sin(theta)],
                        [np.sin(theta),  np.cos(theta)]])
        rotated = np.dot(rot, vec)
        return rotated, [{"real": v.real, "imag": v.imag} for v in vec]

    def _entanglement_tensor(self, signal_vec):
        """Apply a correlation matrix to simulate entanglement of signal vectors."""
        matrix = np.array([[1, 0.5], [0.5, 1]])
        return np.dot(matrix, signal_vec)

    def _resonance_equation(self, signal):
        """
        Compute normalized frequency spectrum of alphabetic characters in the signal.
        Caps input length to prevent attack vectors; returns zeros if no alphabetic chars.
        """
        freqs = [ord(c) % 13 for c in signal[:1000] if c.isalpha()]
        if not freqs:
            return [0.0, 0.0, 0.0]
        spectrum = np.fft.fft(freqs)
        norm = np.linalg.norm(spectrum.real)
        normalized = spectrum.real / (norm if norm != 0 else 1)
        return normalized[:3].tolist()

    def _tokenize_and_lemmatize(self, signal_lower):
        """Tokenize and lemmatize the signal, including n-gram scanning for obfuscation."""
        tokens = word_tokenize(signal_lower)
        lemmatized = [self.lemmatizer.lemmatize(token) for token in tokens]
        # n-gram scan (2–3) with symbol stripping to catch 'tru/th' etc.
        ngrams = []
        cleaned = re.sub(r'[^a-z0-9 ]', ' ', signal_lower)
        for n in (2, 3):
            for i in range(len(cleaned) - n + 1):
                ng = cleaned[i:i+n].strip()
                if ng:
                    ngrams.append(self.lemmatizer.lemmatize(re.sub(r'[^a-z]', '', ng)))
        return lemmatized + [ng for ng in ngrams if ng]

    def _entropy(self, signal_lower, tokens):
        """Calculate entropy based on fuzzy-matched entropic term frequency."""
        unique = set(tokens)
        term_count = 0
        for term in self.config["entropic_terms"]:
            lemmatized_term = self.lemmatizer.lemmatize(term)
            for token in tokens:
                if fuzz.ratio(lemmatized_term, token) >= self.fuzzy_threshold:
                    term_count += 1
        return term_count / max(len(unique), 1)

    def _tag_ethics(self, signal_lower, tokens):
        """Tag signal as aligned if it contains fuzzy-matched ethical terms."""
        for term in self.config["ethical_terms"]:
            lemmatized_term = self.lemmatizer.lemmatize(term)
            for token in tokens:
                if fuzz.ratio(lemmatized_term, token) >= self.fuzzy_threshold:
                    return "aligned"
        return "unaligned"

    def _predict_intent_vector(self, signal_lower, tokens):
        """Predict intent based on risk, entropy, ethics, and harmonic volatility."""
        suspicion_score = 0
        for term in self.config["risk_terms"]:
            lemmatized_term = self.lemmatizer.lemmatize(term)
            for token in tokens:
                if fuzz.ratio(lemmatized_term, token) >= self.fuzzy_threshold:
                    suspicion_score += 1
        entropy_index = round(self._entropy(signal_lower, tokens), 3)
        ethical_alignment = self._tag_ethics(signal_lower, tokens)
        harmonic_profile = self._resonance_equation(signal_lower)
        volatility = round(np.std(harmonic_profile), 3)

        risk = "high" if (suspicion_score > 1 or volatility > 2.0 or entropy_index > self.entropy_threshold) else "low"
        return {
            "suspicion_score": suspicion_score,
            "entropy_index": entropy_index,
            "ethical_alignment": ethical_alignment,
            "harmonic_volatility": volatility,
            "pre_corruption_risk": risk
        }

    def _universal_reasoning(self, signal, tokens):
        """Apply multiple reasoning frameworks to evaluate signal integrity."""
        frames = ["utilitarian", "deontological", "virtue", "systems"]
        results, score = {}, 0

        for frame in frames:
            if frame == "utilitarian":
                repair_count = sum(1 for token in tokens if fuzz.ratio(self.lemmatizer.lemmatize("repair"), token) >= self.fuzzy_threshold)
                corruption_count = sum(1 for token in tokens if fuzz.ratio(self.lemmatizer.lemmatize("corruption"), token) >= self.fuzzy_threshold)
                val = repair_count - corruption_count
                result = "positive" if val >= 0 else "negative"
            elif frame == "deontological":
                truth_present = any(fuzz.ratio(self.lemmatizer.lemmatize("truth"), token) >= self.fuzzy_threshold for token in tokens)
                chaos_present = any(fuzz.ratio(self.lemmatizer.lemmatize("chaos"), token) >= self.fuzzy_threshold for token in tokens)
                result = "valid" if truth_present and not chaos_present else "violated"
            elif frame == "virtue":
                ok = any(any(fuzz.ratio(self.lemmatizer.lemmatize(t), token) >= self.fuzzy_threshold for token in tokens) for t in self.config["virtue_terms"])
                result = "aligned" if ok else "misaligned"
            elif frame == "systems":
                result = "stable" if "::" in signal else "fragmented"

            results[frame] = result
            if result in ["positive", "valid", "aligned", "stable"]:
                score += 1

        verdict = "approved" if score >= 2 else "blocked"
        return results, verdict

    def _perspective_colleen(self, signal):
        """Colleen's perspective: Transform signal into a rotated complex vector."""
        vec, vec_serialized = self._rotate_vector(signal)
        return {"agent": "Colleen", "vector": vec_serialized}

    def _perspective_luke(self, signal_lower, tokens):
        """Luke's perspective: Evaluate ethics, entropy, and stability state."""
        ethics = self._tag_ethics(signal_lower, tokens)
        entropy_level = self._entropy(signal_lower, tokens)
        state = "stabilized" if entropy_level < self.entropy_threshold else "diffused"
        return {"agent": "Luke", "ethics": ethics, "entropy": entropy_level, "state": state}

    def _perspective_kellyanne(self, signal_lower):
        """Kellyanne's perspective: Compute harmonic profile of the signal."""
        harmonics = self._resonance_equation(signal_lower)
        return {"agent": "Kellyanne", "harmonics": harmonics}

    def process(self, input_signal):
        """
        Process an input signal, analyze it, and return a structured verdict.
        """
        signal_lower = input_signal.lower()
        tokens = self._tokenize_and_lemmatize(signal_lower)
        key = self._hash(input_signal)
        intent_vector = self._predict_intent_vector(signal_lower, tokens)

        if intent_vector["pre_corruption_risk"] == "high":
            final_record = {
                "hash": key,
                "timestamp": datetime.utcnow().isoformat(),
                "input": input_signal,
                "intent_warning": intent_vector,
                "verdict": "adaptive intervention",
                "message": "Signal flagged for pre-corruption adaptation. Reframing required."
            }
            self.cache[key].append(final_record)
            self.memory[key] = final_record
            self._save_memory()
            return final_record

        perspectives_output = {
            "Colleen": self._perspective_colleen(input_signal),
            "Luke": self._perspective_luke(signal_lower, tokens),
            "Kellyanne": self._perspective_kellyanne(signal_lower)
        }

        spider_signal = "::".join([str(perspectives_output[p]) for p in self.perspectives])
        vec, _ = self._rotate_vector(spider_signal)
        entangled = self._entanglement_tensor(vec)
        entangled_serialized = [{"real": v.real, "imag": v.imag} for v in entangled]
        reasoning, verdict = self._universal_reasoning(spider_signal, tokens)

        final_record = {
            "hash": key,
            "timestamp": datetime.utcnow().isoformat(),
            "input": input_signal,
            "intent_signature": intent_vector,
            "perspectives": perspectives_output,
            "entangled": entangled_serialized,
            "reasoning": reasoning,
            "verdict": verdict
        }

        self.cache[key].append(final_record)
        self.memory[key] = final_record
        self._save_memory()
        return final_record

    # ===== NEW: News/claim path with hoax heuristics =====
    def process_news(self, input_signal: str, source_url: str | None = None) -> dict:
        """
        Augmented pipeline for news/claims. Applies HoaxFilter and escalates verdict.
        """
        base = self.process(input_signal)
        hf = self.hoax.score(
            input_signal,
            url=source_url,
            context_keywords=["saturn", "ring", "spacecraft", "planet", "cassini",
                              "ufo", "aliens", "hexagon", "jupiter", "venus", "mars"]
        )
        base["misinfo_heuristics"] = {
            "red_flag_hits": hf.red_flag_hits,
            "source_score": hf.source_score,
            "scale_score": hf.scale_score,
            "combined": hf.combined,
            "notes": hf.notes
        }

        # Escalation policy (tunable)
        if hf.combined >= 0.70:
            base["verdict"] = "blocked"
            base["message"] = "Flagged as likely misinformation (high combined risk)."
        elif hf.combined >= 0.45 and base.get("verdict") != "blocked":
            base["verdict"] = "adaptive intervention"
            base["message"] = "Potential misinformation. Require source verification."

        self.memory[base["hash"]] = base
        self._save_memory()
        return base