Spaces:
Runtime error
Runtime error
import time | |
import cv2 | |
import numpy as np | |
import onnxruntime | |
try: | |
from demo.object_detection.utils import draw_detections | |
except (ImportError, ModuleNotFoundError): | |
from utils import draw_detections | |
class YOLOv10: | |
def __init__(self, path): | |
self.initialize_model(path) | |
def __call__(self, image): | |
return self.detect_objects(image) | |
def initialize_model(self, path): | |
self.session = onnxruntime.InferenceSession(path, providers=['CPUExecutionProvider']) | |
self.get_input_details() | |
self.get_output_details() | |
def detect_objects(self, image, conf_threshold=0.3): | |
input_tensor = self.prepare_input(image) | |
return self.inference(image, input_tensor, conf_threshold) | |
def prepare_input(self, image): | |
self.img_height, self.img_width = image.shape[:2] | |
input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
input_img = cv2.resize(input_img, (self.input_width, self.input_height)) | |
input_img = input_img / 255.0 | |
input_img = input_img.transpose(2, 0, 1) | |
input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32) | |
return input_tensor | |
def inference(self, image, input_tensor, conf_threshold=0.3): | |
start = time.perf_counter() | |
outputs = self.session.run(self.output_names, {self.input_names[0]: input_tensor}) | |
print(f"Inference time: {(time.perf_counter() - start) * 1000:.2f} ms") | |
boxes, scores, class_ids = self.process_output(outputs, conf_threshold) | |
return self.draw_detections(image, boxes, scores, class_ids) | |
def process_output(self, output, conf_threshold=0.3): | |
predictions = np.squeeze(output[0]) | |
scores = predictions[:, 4] | |
predictions = predictions[scores > conf_threshold, :] | |
scores = scores[scores > conf_threshold] | |
if len(scores) == 0: | |
return [], [], [] | |
class_ids = predictions[:, 5].astype(int) | |
boxes = self.extract_boxes(predictions) | |
return boxes, scores, class_ids | |
def extract_boxes(self, predictions): | |
boxes = predictions[:, :4] | |
boxes = self.rescale_boxes(boxes) | |
return boxes | |
def rescale_boxes(self, boxes): | |
input_shape = np.array([self.input_width, self.input_height, self.input_width, self.input_height]) | |
boxes = np.divide(boxes, input_shape, dtype=np.float32) | |
boxes *= np.array([self.img_width, self.img_height, self.img_width, self.img_height]) | |
return boxes | |
def draw_detections(self, image, boxes, scores, class_ids, draw_scores=True, mask_alpha=0.4): | |
return draw_detections(image, boxes, scores, class_ids, mask_alpha) | |
def get_input_details(self): | |
model_inputs = self.session.get_inputs() | |
self.input_names = [model_inputs[i].name for i in range(len(model_inputs))] | |
self.input_shape = model_inputs[0].shape | |
self.input_height = self.input_shape[2] | |
self.input_width = self.input_shape[3] | |
def get_output_details(self): | |
model_outputs = self.session.get_outputs() | |
self.output_names = [model_outputs[i].name for i in range(len(model_outputs))] | |