Prathamesh1420 commited on
Commit
990607c
·
verified ·
1 Parent(s): 33eab27

Upload inference.py

Browse files
Files changed (1) hide show
  1. inference.py +77 -0
inference.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import cv2
3
+ import numpy as np
4
+ import onnxruntime
5
+
6
+ try:
7
+ from demo.object_detection.utils import draw_detections
8
+ except (ImportError, ModuleNotFoundError):
9
+ from utils import draw_detections
10
+
11
+ class YOLOv10:
12
+ def __init__(self, path):
13
+ self.initialize_model(path)
14
+
15
+ def __call__(self, image):
16
+ return self.detect_objects(image)
17
+
18
+ def initialize_model(self, path):
19
+ self.session = onnxruntime.InferenceSession(path, providers=['CPUExecutionProvider'])
20
+ self.get_input_details()
21
+ self.get_output_details()
22
+
23
+ def detect_objects(self, image, conf_threshold=0.3):
24
+ input_tensor = self.prepare_input(image)
25
+ return self.inference(image, input_tensor, conf_threshold)
26
+
27
+ def prepare_input(self, image):
28
+ self.img_height, self.img_width = image.shape[:2]
29
+ input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
30
+ input_img = cv2.resize(input_img, (self.input_width, self.input_height))
31
+ input_img = input_img / 255.0
32
+ input_img = input_img.transpose(2, 0, 1)
33
+ input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)
34
+ return input_tensor
35
+
36
+ def inference(self, image, input_tensor, conf_threshold=0.3):
37
+ start = time.perf_counter()
38
+ outputs = self.session.run(self.output_names, {self.input_names[0]: input_tensor})
39
+ print(f"Inference time: {(time.perf_counter() - start) * 1000:.2f} ms")
40
+ boxes, scores, class_ids = self.process_output(outputs, conf_threshold)
41
+ return self.draw_detections(image, boxes, scores, class_ids)
42
+
43
+ def process_output(self, output, conf_threshold=0.3):
44
+ predictions = np.squeeze(output[0])
45
+ scores = predictions[:, 4]
46
+ predictions = predictions[scores > conf_threshold, :]
47
+ scores = scores[scores > conf_threshold]
48
+ if len(scores) == 0:
49
+ return [], [], []
50
+ class_ids = predictions[:, 5].astype(int)
51
+ boxes = self.extract_boxes(predictions)
52
+ return boxes, scores, class_ids
53
+
54
+ def extract_boxes(self, predictions):
55
+ boxes = predictions[:, :4]
56
+ boxes = self.rescale_boxes(boxes)
57
+ return boxes
58
+
59
+ def rescale_boxes(self, boxes):
60
+ input_shape = np.array([self.input_width, self.input_height, self.input_width, self.input_height])
61
+ boxes = np.divide(boxes, input_shape, dtype=np.float32)
62
+ boxes *= np.array([self.img_width, self.img_height, self.img_width, self.img_height])
63
+ return boxes
64
+
65
+ def draw_detections(self, image, boxes, scores, class_ids, draw_scores=True, mask_alpha=0.4):
66
+ return draw_detections(image, boxes, scores, class_ids, mask_alpha)
67
+
68
+ def get_input_details(self):
69
+ model_inputs = self.session.get_inputs()
70
+ self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
71
+ self.input_shape = model_inputs[0].shape
72
+ self.input_height = self.input_shape[2]
73
+ self.input_width = self.input_shape[3]
74
+
75
+ def get_output_details(self):
76
+ model_outputs = self.session.get_outputs()
77
+ self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]