File size: 1,958 Bytes
cc63bcb
 
 
 
 
 
 
 
 
 
 
41451f5
f0d95ad
cc63bcb
 
d33fcf2
cc63bcb
 
 
 
 
 
 
 
36527b7
cc63bcb
 
 
44ae7ba
 
cc63bcb
 
 
 
 
 
47b5b4d
cc63bcb
 
 
 
 
246ad1e
36527b7
 
cc63bcb
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import streamlit as st
from PIL import Image
import jax
import jax.numpy as jnp  # JAX NumPy
import numpy as np
from huggingface_hub import HfFileSystem
from flax.serialization import msgpack_restore, from_state_dict
import time
from generator import Generator, LATENT_DIM
import math

generator = Generator(7)
variables = generator.init(jax.random.PRNGKey(0), jnp.zeros([1, LATENT_DIM]))

fs = HfFileSystem()
with fs.open("PrakhAI/AIPlane3/g_checkpoint_400000.msgpack", "rb") as f:
  g_state = from_state_dict(variables, msgpack_restore(f.read()))

def sample_latent(batch, key):
  return jax.random.normal(key, shape=(batch, LATENT_DIM))

def to_img(normalized):
  return ((normalized+1)*255./2.).astype(np.uint8)

st.write("The model and its details are at https://huggingface.co/PrakhAI/AIPlane3")
if st.button('Generate Random'):
  st.session_state['generate'] = None

ROWS = 3
COLUMNS = 3

def set_latent(latent):
  st.session_state['generate'] = latent

if 'generate' in st.session_state:
  unique_id = int(1_000_000 * time.time())
  latents = sample_latent(ROWS*COLUMNS, jax.random.PRNGKey(unique_id))
  previous = st.session_state['generate']
  if previous is not None:
    if "similarity" not in st.session_state:
      st.session_state["similarity"] = 0.5
    similarity = st.number_input(label="Mutation (for \"Generate Similar\") - lower value generates more similar images", key="similarity", min_value=0.01, max_value=1.0)
    latents = np.repeat([previous], repeats=ROWS*COLUMNS, axis=0) + similarity * latents
  g_out = generator.apply({'params': g_state['params']}, latents)
  img = np.array(to_img(g_out))
  for row in range(ROWS):
    with st.container():
      for (col_idx, col) in enumerate(st.columns(COLUMNS)):
        with col:
          idx = row*COLUMNS + col_idx
          st.image(Image.fromarray(img[idx]))
          st.button(label="Generate Similar", key="%d_%d" % (unique_id, idx), on_click=set_latent, args=(latents[idx],))