Commit
·
cc63bcb
0
Parent(s):
Duplicate from PrakhAI/AIPlane2
Browse files- .gitattributes +35 -0
- README.md +13 -0
- __init__.py +0 -0
- app.py +52 -0
- generator.py +59 -0
- local_response_norm.py +11 -0
- requirements.txt +1 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: AIPlane2
|
3 |
+
emoji: 🌖
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.25.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: PrakhAI/AIPlane2
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__init__.py
ADDED
File without changes
|
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import jax
|
4 |
+
import jax.numpy as jnp # JAX NumPy
|
5 |
+
import numpy as np
|
6 |
+
from huggingface_hub import HfFileSystem
|
7 |
+
from flax.serialization import msgpack_restore, from_state_dict
|
8 |
+
import time
|
9 |
+
from generator import Generator, LATENT_DIM
|
10 |
+
import math
|
11 |
+
|
12 |
+
generator = Generator()
|
13 |
+
variables = generator.init(jax.random.PRNGKey(0), jnp.zeros([1, LATENT_DIM]), training=False)
|
14 |
+
|
15 |
+
fs = HfFileSystem()
|
16 |
+
with fs.open("PrakhAI/AIPlane2/g_checkpoint.msgpack", "rb") as f:
|
17 |
+
g_state = from_state_dict(variables, msgpack_restore(f.read()))
|
18 |
+
|
19 |
+
def sample_latent(batch, key):
|
20 |
+
return jax.random.normal(key, shape=(batch, LATENT_DIM))
|
21 |
+
|
22 |
+
def to_img(normalized):
|
23 |
+
return ((normalized+1)*255./2.).astype(np.uint8)
|
24 |
+
|
25 |
+
st.write("The model and its details are at https://huggingface.co/PrakhAI/AIPlane2")
|
26 |
+
if st.button('Generate Random'):
|
27 |
+
st.session_state['generate'] = None
|
28 |
+
|
29 |
+
ROWS = 4
|
30 |
+
COLUMNS = 4
|
31 |
+
|
32 |
+
def set_latent(latent):
|
33 |
+
st.session_state['generate'] = latent
|
34 |
+
|
35 |
+
if 'generate' in st.session_state:
|
36 |
+
unique_id = int(1_000_000 * time.time())
|
37 |
+
latents = sample_latent(ROWS * COLUMNS, jax.random.PRNGKey(unique_id))
|
38 |
+
previous = st.session_state['generate']
|
39 |
+
if previous is not None:
|
40 |
+
if "similarity" not in st.session_state:
|
41 |
+
st.session_state["similarity"] = 0.5
|
42 |
+
similarity = st.number_input(label="Mutation (for \"Generate Similar\") - lower value generates more similar images", key="similarity", min_value=0.01, max_value=1.0)
|
43 |
+
latents = np.repeat([previous], repeats=16, axis=0) + similarity * latents
|
44 |
+
(g_out128, _, _, _, _, _) = generator.apply({'params': g_state['params'], 'batch_stats': g_state['batch_stats']}, latents, training=False)
|
45 |
+
img = np.array(to_img(g_out128))
|
46 |
+
for row in range(ROWS):
|
47 |
+
with st.container():
|
48 |
+
for (col_idx, col) in enumerate(st.columns(COLUMNS)):
|
49 |
+
with col:
|
50 |
+
idx = row*COLUMNS + col_idx
|
51 |
+
st.image(Image.fromarray(img[idx]))
|
52 |
+
st.button(label="Generate Similar", key="%d_%d" % (unique_id, idx), on_click=set_latent, args=(latents[idx],))
|
generator.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flax import linen as nn
|
2 |
+
import jax
|
3 |
+
import jax.numpy as jnp
|
4 |
+
from local_response_norm import LocalResponseNorm
|
5 |
+
|
6 |
+
LATENT_DIM = 500
|
7 |
+
EPSILON = 1e-8
|
8 |
+
|
9 |
+
class Generator(nn.Module):
|
10 |
+
@nn.compact
|
11 |
+
def __call__(self, latent, training=True):
|
12 |
+
x = nn.Dense(features=64)(latent)
|
13 |
+
# x = nn.BatchNorm(not training)(x)
|
14 |
+
x = nn.relu(x)
|
15 |
+
x = nn.Dense(features=2*2*1024)(x)
|
16 |
+
x = nn.BatchNorm(not training)(x)
|
17 |
+
x = nn.relu(x)
|
18 |
+
x = nn.Dropout(0.25, deterministic=not training)(x)
|
19 |
+
x = x.reshape((x.shape[0], 2, 2, -1))
|
20 |
+
x4 = nn.ConvTranspose(features=512, kernel_size=(3, 3), strides=(2, 2))(x)
|
21 |
+
x4 = LocalResponseNorm()(x4)
|
22 |
+
x4 = nn.relu(x4)
|
23 |
+
x4o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x4)
|
24 |
+
x4 = nn.ConvTranspose(features=512, kernel_size=(3, 3))(x4)
|
25 |
+
x4 = LocalResponseNorm()(x4)
|
26 |
+
x4 = nn.relu(x4)
|
27 |
+
x8 = nn.ConvTranspose(features=256, kernel_size=(3, 3), strides=(2, 2))(x4)
|
28 |
+
x8 = LocalResponseNorm()(x8)
|
29 |
+
x8 = nn.relu(x8)
|
30 |
+
x8o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x8)
|
31 |
+
x8 = nn.ConvTranspose(features=256, kernel_size=(3, 3))(x8)
|
32 |
+
x8 = LocalResponseNorm()(x8)
|
33 |
+
x8 = nn.relu(x8)
|
34 |
+
x16 = nn.ConvTranspose(features=128, kernel_size=(3, 3), strides=(2, 2))(x8)
|
35 |
+
x16 = LocalResponseNorm()(x16)
|
36 |
+
x16 = nn.relu(x16)
|
37 |
+
x16o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x16)
|
38 |
+
x16 = nn.ConvTranspose(features=128, kernel_size=(3, 3))(x16)
|
39 |
+
x16 = LocalResponseNorm()(x16)
|
40 |
+
x16 = nn.relu(x16)
|
41 |
+
x32 = nn.ConvTranspose(features=64, kernel_size=(3, 3), strides=(2, 2))(x16)
|
42 |
+
x32 = LocalResponseNorm()(x32)
|
43 |
+
x32 = nn.relu(x32)
|
44 |
+
x32o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x32)
|
45 |
+
x32 = nn.ConvTranspose(features=64, kernel_size=(3, 3))(x32)
|
46 |
+
x32 = LocalResponseNorm()(x32)
|
47 |
+
x32 = nn.relu(x32)
|
48 |
+
x64 = nn.ConvTranspose(features=32, kernel_size=(3, 3), strides=(2, 2))(x32)
|
49 |
+
x64 = LocalResponseNorm()(x64)
|
50 |
+
x64 = nn.relu(x64)
|
51 |
+
x64o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x64)
|
52 |
+
x64 = nn.ConvTranspose(features=32, kernel_size=(3, 3))(x64)
|
53 |
+
x64 = LocalResponseNorm()(x64)
|
54 |
+
x64 = nn.relu(x64)
|
55 |
+
x128 = nn.ConvTranspose(features=64, kernel_size=(3, 3), strides=(2, 2))(x64)
|
56 |
+
x128 = LocalResponseNorm()(x128)
|
57 |
+
x128 = nn.relu(x128)
|
58 |
+
x128o = nn.ConvTranspose(features=3, kernel_size=(3, 3))(x128)
|
59 |
+
return (nn.tanh(x128o), nn.tanh(x64o), nn.tanh(x32o), nn.tanh(x16o), nn.tanh(x8o), nn.tanh(x4o))
|
local_response_norm.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flax import linen as nn
|
2 |
+
import jax
|
3 |
+
import jax.numpy as jnp
|
4 |
+
|
5 |
+
class LocalResponseNorm(nn.Module):
|
6 |
+
@nn.compact
|
7 |
+
def __call__(
|
8 |
+
self,
|
9 |
+
value: jax.Array
|
10 |
+
) -> jax.Array:
|
11 |
+
return value / jnp.repeat(jnp.expand_dims((1e-8 + (value**2).mean(axis=-1))**0.5, axis=-1), repeats=value.shape[-1], axis=-1)
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
flax
|