Senorita / test_demo_videos_controlnet.py
PengWeixuanSZU's picture
Upload 66 files
84abaca verified
raw
history blame
8.78 kB
import cv2
import torch
import argparse
import numpy as np
import os
from control_cogvideox.cogvideox_transformer_3d import CogVideoXTransformer3DModel
from control_cogvideox.controlnet_cogvideox_transformer_3d import ControlCogVideoXTransformer3DModel
from pipeline_cogvideox_controlnet_5b_i2v_instruction2 import ControlCogVideoXPipeline
from diffusers.utils import export_to_video
from diffusers import AutoencoderKLCogVideoX
from transformers import T5EncoderModel, T5Tokenizer
from diffusers.schedulers import CogVideoXDDIMScheduler
from safetensors.torch import load_file
from omegaconf import OmegaConf
from transformers import T5EncoderModel
from einops import rearrange
from decord import VideoReader
import transformers
from transformers import CLIPTextModel, CLIPProcessor, CLIPVisionModel, CLIPTokenizer
from PIL import Image
import torch.nn.functional as F
from dataset_demo_videos import VideoDataset
def unwarp_model(state_dict):
new_state_dict = {}
for key in state_dict:
new_state_dict[key.split('module.')[1]] = state_dict[key]
return new_state_dict
"""
def transform_tensor_to_images(images):
images = images.cpu().detach().numpy()
images = np.uint8(images)
images2 = []
for image in images:
image = Image.fromarray(image)
images2.append(image)
return images2
"""
parser = argparse.ArgumentParser()
parser.add_argument("--pos_prompt", type=str, default="")
parser.add_argument("--neg_prompt", type=str, default="")
parser.add_argument("--training_steps", type=int, default=30001)
parser.add_argument("--root_path", type=str, default="./models_half")
parser.add_argument("--i2v", action="store_true",default=True)
parser.add_argument("--guidance_scale", type=float, default=4.0)
parser.add_argument("--random_seed", type=int, default=0)
args = parser.parse_args()
#-----------------------------------------------------------------
prefix = args.root_path.replace("/","_").replace(".","_") + "_" + args.pos_prompt.replace(" ","_").replace(".","_")
#-----------------------------------------------------------------
if args.i2v:
key = "i2v"
else:
key = "t2v"
noise_scheduler = CogVideoXDDIMScheduler(
**OmegaConf.to_container(
OmegaConf.load(f"./cogvideox-5b-{key}/scheduler/scheduler_config.json")
)
)
text_encoder = T5EncoderModel.from_pretrained(f"./cogvideox-5b-{key}/", subfolder="text_encoder", torch_dtype=torch.float16)#.to("cuda:0")
vae = AutoencoderKLCogVideoX.from_pretrained(f"./cogvideox-5b-{key}/", subfolder="vae", torch_dtype=torch.float16).to("cuda:0")
tokenizer = T5Tokenizer.from_pretrained(f"./cogvideox-5b-{key}/tokenizer", torch_dtype=torch.float16)
config = OmegaConf.to_container(
OmegaConf.load(f"./cogvideox-5b-{key}/transformer/config.json")
)
if args.i2v:
config["in_channels"] = 32
else:
config["in_channels"] = 16
transformer = CogVideoXTransformer3DModel(**config)
control_config = OmegaConf.to_container(
OmegaConf.load(f"./cogvideox-5b-{key}/transformer/config.json")
)
if args.i2v:
control_config["in_channels"] = 32
else:
control_config["in_channels"] = 16
control_config['num_layers'] = 6
control_config['control_in_channels'] = 16
controlnet_transformer = ControlCogVideoXTransformer3DModel(**control_config)
all_state_dicts = torch.load("{args.root_path}/ff_controlnet_half.pth", map_location="cpu",weights_only=True)
transformer_state_dict = unwarp_model(all_state_dicts["transformer_state_dict"])
controlnet_transformer_state_dict = unwarp_model(all_state_dicts["controlnet_transformer_state_dict"])
transformer.load_state_dict(transformer_state_dict, strict=True)
controlnet_transformer.load_state_dict(controlnet_transformer_state_dict, strict=True)
transformer = transformer.half().to("cuda:0")
controlnet_transformer = controlnet_transformer.half().to("cuda:0")
vae = vae.eval()
text_encoder = text_encoder.eval()
transformer = transformer.eval()
controlnet_transformer = controlnet_transformer.eval()
pipe = ControlCogVideoXPipeline(tokenizer,
text_encoder,
vae,
transformer,
noise_scheduler,
controlnet_transformer,
)#.to("cuda:0")
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.enable_model_cpu_offload()
def inference(prefix, source_images, \
target_images, \
text_prompt, negative_prompt, \
pipe, vae, \
step, guidance_scale, \
target_path, video_dir, \
h, w, random_seed):
source_pixel_values = source_images/127.5 - 1.0
source_pixel_values = source_pixel_values.to(torch.float16).to("cuda:0")
if target_images is not None:
target_pixel_values = target_images/127.5 - 1.0
target_pixel_values = target_pixel_values.to(torch.float16).to("cuda:0")
bsz,f,h,w,c = source_pixel_values.shape
with torch.no_grad():
source_pixel_values = rearrange(source_pixel_values, "b f w h c -> b c f w h")
source_latents = vae.encode(source_pixel_values).latent_dist.sample()
source_latents = source_latents.to(torch.float16)
source_latents = source_latents * vae.config.scaling_factor
source_latents = rearrange(source_latents, "b c f h w -> b f c h w")
if target_images is not None:
target_pixel_values = rearrange(target_pixel_values, "b f w h c -> b c f w h")
images = target_pixel_values[:,:,:1,...]
image_latents = vae.encode(images).latent_dist.sample()
image_latents = image_latents.to(torch.float16)
image_latents = image_latents * vae.config.scaling_factor
image_latents = rearrange(image_latents, "b c f h w -> b f c h w")
image_latents = torch.cat([image_latents, torch.zeros_like(source_latents)[:,1:]],dim=1)
latents = torch.cat([image_latents, source_latents], dim=2)
else:
image_latents = None
latents = source_latents
video = pipe(
prompt = text_prompt,
negative_prompt = negative_prompt,
video_condition = source_latents, # input to controlnet
video_condition2 = image_latents, # concat with latents
height = h,
width = w,
num_frames = f,
num_inference_steps = 50,
interval = 6,
guidance_scale = guidance_scale,
generator = torch.Generator(device=f"cuda:0").manual_seed(random_seed)
).frames[0]
def transform_tensor_to_images(images):
images = images.cpu().detach().numpy()
images = np.uint8(images)
images2 = []
for image in images:
image = Image.fromarray(image)
images2.append(image)
return images2
source_images = transform_tensor_to_images(source_images[0])
os.makedirs(f"./{target_path}/{step}_{prefix}_video_guidance_scale_{guidance_scale}", exist_ok=True)
export_to_video(video, f"./{target_path}/{step}_{prefix}_video_guidance_scale_{guidance_scale}/output_{random_seed}.mp4", fps=8)
export_to_video(source_images, f"./{target_path}/{step}_{prefix}_video_guidance_scale_{guidance_scale}/output_{random_seed}_org.mp4", fps=8)
def read_video(video_path, h, w):
vr = VideoReader(video_path)
images = vr.get_batch(list(range(min(33, len(vr))))).asnumpy()
images2 = []
for image in images:
image = cv2.resize(image, (h,w))
images2.append(image)
images2 = np.array(images2)
images = images2
del vr
images = torch.from_numpy(images)
return images
def resize(images, h, w):
images = rearrange(images, "f w h c -> f c w h")
images = F.interpolate(images, (h, w), mode="bilinear")
images = rearrange(images, "f c w h -> f w h c")
images = images[None,...]
return images
h = 448
w = 768
root_dir = 'additional_videos8'
dataset = VideoDataset(root_dir)
print(len(dataset))
for step, sample in enumerate(dataset):
image = sample['image'] # w h c
images = sample['frames'] # f w h c
pos_prompt = sample['pos_prompt']
neg_prompt = sample['neg_prompt']
image_path = sample['image_path']
prefix = image_path.replace("/","_")
source_images = images[None,...]
target_images = image[None,None,...]
print(pos_prompt, neg_prompt)
print(source_images.shape, torch.min(source_images), torch.max(source_images))
print(target_images.shape, torch.min(target_images), torch.max(target_images))
target_path = f"demo_first_frame_controlnet_33_stride_2_new_videos_8/{prefix}/"
random_seeds = [args.random_seed]
for random_seed in random_seeds:
inference("", source_images, \
target_images, pos_prompt, \
neg_prompt, pipe, vae, \
args.training_steps, args.guidance_scale, \
target_path, "", \
h, w, random_seed)