File size: 8,777 Bytes
84abaca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import cv2
import torch
import argparse
import numpy as np
import os
from control_cogvideox.cogvideox_transformer_3d import CogVideoXTransformer3DModel
from control_cogvideox.controlnet_cogvideox_transformer_3d import ControlCogVideoXTransformer3DModel
from pipeline_cogvideox_controlnet_5b_i2v_instruction2 import ControlCogVideoXPipeline
from diffusers.utils import export_to_video
from diffusers import AutoencoderKLCogVideoX
from transformers import T5EncoderModel, T5Tokenizer
from diffusers.schedulers import CogVideoXDDIMScheduler
from safetensors.torch import load_file
from omegaconf import OmegaConf
from transformers import T5EncoderModel
from einops import rearrange
from decord import VideoReader
import transformers
from transformers import CLIPTextModel, CLIPProcessor, CLIPVisionModel, CLIPTokenizer
from PIL import Image
import torch.nn.functional as F

from dataset_demo_videos import VideoDataset

def unwarp_model(state_dict):
    new_state_dict = {}
    for key in state_dict:
        new_state_dict[key.split('module.')[1]] = state_dict[key]
    return new_state_dict

"""
def transform_tensor_to_images(images):
    images = images.cpu().detach().numpy()
    images = np.uint8(images)
    images2 = []
    for image in images:
        image = Image.fromarray(image)
        images2.append(image)
    return images2
"""

parser = argparse.ArgumentParser()
parser.add_argument("--pos_prompt", type=str, default="")
parser.add_argument("--neg_prompt", type=str, default="")
parser.add_argument("--training_steps", type=int, default=30001)
parser.add_argument("--root_path", type=str, default="./models_half")
parser.add_argument("--i2v", action="store_true",default=True)
parser.add_argument("--guidance_scale", type=float, default=4.0)
parser.add_argument("--random_seed", type=int, default=0)
args = parser.parse_args()

#-----------------------------------------------------------------
prefix = args.root_path.replace("/","_").replace(".","_") + "_" + args.pos_prompt.replace(" ","_").replace(".","_")
#-----------------------------------------------------------------


if args.i2v:
    key = "i2v"
else:
    key = "t2v"
noise_scheduler = CogVideoXDDIMScheduler(
    **OmegaConf.to_container(
        OmegaConf.load(f"./cogvideox-5b-{key}/scheduler/scheduler_config.json")
    )
)

text_encoder = T5EncoderModel.from_pretrained(f"./cogvideox-5b-{key}/", subfolder="text_encoder", torch_dtype=torch.float16)#.to("cuda:0")
vae = AutoencoderKLCogVideoX.from_pretrained(f"./cogvideox-5b-{key}/", subfolder="vae", torch_dtype=torch.float16).to("cuda:0")
tokenizer = T5Tokenizer.from_pretrained(f"./cogvideox-5b-{key}/tokenizer", torch_dtype=torch.float16)


config = OmegaConf.to_container(
    OmegaConf.load(f"./cogvideox-5b-{key}/transformer/config.json")
)
if args.i2v:
    config["in_channels"] = 32
else:
    config["in_channels"] = 16
transformer = CogVideoXTransformer3DModel(**config)

control_config = OmegaConf.to_container(
    OmegaConf.load(f"./cogvideox-5b-{key}/transformer/config.json")
)
if args.i2v:
    control_config["in_channels"] = 32
else:
    control_config["in_channels"] = 16
control_config['num_layers'] = 6
control_config['control_in_channels'] = 16
controlnet_transformer = ControlCogVideoXTransformer3DModel(**control_config)

all_state_dicts = torch.load("{args.root_path}/ff_controlnet_half.pth", map_location="cpu",weights_only=True)
transformer_state_dict = unwarp_model(all_state_dicts["transformer_state_dict"])
controlnet_transformer_state_dict = unwarp_model(all_state_dicts["controlnet_transformer_state_dict"])

transformer.load_state_dict(transformer_state_dict, strict=True)
controlnet_transformer.load_state_dict(controlnet_transformer_state_dict, strict=True)

transformer = transformer.half().to("cuda:0")
controlnet_transformer = controlnet_transformer.half().to("cuda:0")

vae = vae.eval()
text_encoder = text_encoder.eval()
transformer = transformer.eval()
controlnet_transformer = controlnet_transformer.eval()

pipe = ControlCogVideoXPipeline(tokenizer,
        text_encoder,
        vae,
        transformer,
        noise_scheduler,
        controlnet_transformer,
)#.to("cuda:0")

pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.enable_model_cpu_offload()

def inference(prefix, source_images, \
        target_images, \
        text_prompt, negative_prompt, \
        pipe, vae, \
        step, guidance_scale, \
        target_path, video_dir, \
        h, w, random_seed):

    source_pixel_values = source_images/127.5 - 1.0
    source_pixel_values = source_pixel_values.to(torch.float16).to("cuda:0")
    if target_images is not None:
        target_pixel_values = target_images/127.5 - 1.0
        target_pixel_values = target_pixel_values.to(torch.float16).to("cuda:0")
    bsz,f,h,w,c = source_pixel_values.shape

    with torch.no_grad():
        source_pixel_values = rearrange(source_pixel_values, "b f w h c -> b c f w h")
        source_latents = vae.encode(source_pixel_values).latent_dist.sample()
        source_latents = source_latents.to(torch.float16)
        source_latents = source_latents * vae.config.scaling_factor
        source_latents = rearrange(source_latents, "b c f h w -> b f c h w")

        if target_images is not None:
            target_pixel_values = rearrange(target_pixel_values, "b f w h c -> b c f w h")
            images = target_pixel_values[:,:,:1,...]
            image_latents = vae.encode(images).latent_dist.sample()
            image_latents = image_latents.to(torch.float16)
            image_latents = image_latents * vae.config.scaling_factor
            image_latents = rearrange(image_latents, "b c f h w -> b f c h w")
            image_latents = torch.cat([image_latents, torch.zeros_like(source_latents)[:,1:]],dim=1)
            latents = torch.cat([image_latents, source_latents], dim=2)
        else:
            image_latents = None
            latents = source_latents

    video = pipe(
        prompt = text_prompt,
        negative_prompt = negative_prompt,
        video_condition = source_latents, # input to controlnet
        video_condition2 = image_latents, # concat with latents
        height = h,
        width = w,
        num_frames = f,
        num_inference_steps = 50,
        interval = 6,
        guidance_scale = guidance_scale,
        generator = torch.Generator(device=f"cuda:0").manual_seed(random_seed)
    ).frames[0]

    def transform_tensor_to_images(images):
        images = images.cpu().detach().numpy()
        images = np.uint8(images)
        images2 = []
        for image in images:
            image = Image.fromarray(image)
            images2.append(image)
        return images2

    source_images = transform_tensor_to_images(source_images[0])

    os.makedirs(f"./{target_path}/{step}_{prefix}_video_guidance_scale_{guidance_scale}", exist_ok=True)
    export_to_video(video, f"./{target_path}/{step}_{prefix}_video_guidance_scale_{guidance_scale}/output_{random_seed}.mp4", fps=8)
    export_to_video(source_images, f"./{target_path}/{step}_{prefix}_video_guidance_scale_{guidance_scale}/output_{random_seed}_org.mp4", fps=8)

def read_video(video_path, h, w):
    vr = VideoReader(video_path)
    images = vr.get_batch(list(range(min(33, len(vr))))).asnumpy()
    images2 = []
    for image in images:
        image = cv2.resize(image, (h,w))
        images2.append(image)
    images2 = np.array(images2)
    images = images2
    del vr
    images = torch.from_numpy(images)
    return images

def resize(images, h, w):
    images = rearrange(images, "f w h c -> f c w h")
    images = F.interpolate(images, (h, w), mode="bilinear")
    images = rearrange(images, "f c w h -> f w h c")
    images = images[None,...]
    return images

h = 448
w = 768

root_dir = 'additional_videos8'
dataset = VideoDataset(root_dir)
print(len(dataset))
for step, sample in enumerate(dataset):
    image = sample['image'] # w h c
    images = sample['frames'] # f w h c
    pos_prompt = sample['pos_prompt']
    neg_prompt = sample['neg_prompt']
    image_path = sample['image_path']
    prefix = image_path.replace("/","_")

    source_images = images[None,...]
    target_images = image[None,None,...]
    
    print(pos_prompt, neg_prompt)
    print(source_images.shape, torch.min(source_images), torch.max(source_images))
    print(target_images.shape, torch.min(target_images), torch.max(target_images))
    target_path = f"demo_first_frame_controlnet_33_stride_2_new_videos_8/{prefix}/"
    random_seeds = [args.random_seed]
    for random_seed in random_seeds:
        inference("", source_images, \
            target_images, pos_prompt, \
            neg_prompt, pipe, vae, \
            args.training_steps, args.guidance_scale, \
            target_path, "", \
            h, w, random_seed)