lokiai / main.py
ParthSadaria's picture
Update main.py
74e8abb verified
raw
history blame
57.4 kB
import os
import re
import json
import datetime
import time
import asyncio
import logging
from pathlib import Path
from functools import lru_cache
from typing import Optional, Dict, List, Any, Generator, Set
from concurrent.futures import ThreadPoolExecutor
# Third-party libraries (ensure these are in requirements.txt)
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException, Request, Depends, Security, Response
from fastapi.responses import StreamingResponse, HTMLResponse, JSONResponse, FileResponse
from fastapi.security import APIKeyHeader
from pydantic import BaseModel
import httpx
import uvloop # Use uvloop for performance
from fastapi.middleware.gzip import GZipMiddleware
from starlette.middleware.cors import CORSMiddleware
import cloudscraper # For bypassing Cloudflare, potentially unreliable
import requests # For synchronous requests like in /dynamo
# HF Space Note: Ensure usage_tracker.py is in your repository
try:
from usage_tracker import UsageTracker
usage_tracker = UsageTracker()
except ImportError:
print("Warning: usage_tracker.py not found. Usage tracking will be disabled.")
# Create a dummy tracker if the file is missing
class DummyUsageTracker:
def record_request(self, *args, **kwargs): pass
def get_usage_summary(self, *args, **kwargs): return {}
def save_data(self, *args, **kwargs): pass
usage_tracker = DummyUsageTracker()
# --- Configuration & Setup ---
# HF Space Note: uvloop can improve performance in I/O bound tasks common in web apps.
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
# HF Space Note: Adjust max_workers based on your HF Space resources (CPU).
# Higher tiers allow more workers. Start lower (e.g., 4) for free tier.
executor = ThreadPoolExecutor(max_workers=8)
# HF Space Note: load_dotenv() is useful for local dev but HF Spaces use Secrets.
# os.getenv will automatically pick up secrets set in the HF Space settings.
load_dotenv()
# Logging setup
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# API key security
api_key_header = APIKeyHeader(name="Authorization", auto_error=False)
# --- FastAPI App Initialization ---
app = FastAPI(
title="LokiAI API",
description="API Proxy for various AI models with usage tracking and streaming.",
version="1.0.0"
)
# Middleware
app.add_middleware(GZipMiddleware, minimum_size=1000) # Compress large responses
app.add_middleware(
CORSMiddleware, # Allow cross-origin requests (useful for web playgrounds)
allow_origins=["*"], # Or restrict to specific origins
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# --- Environment Variables & Model Config ---
@lru_cache(maxsize=1) # Cache environment variables
def get_env_vars() -> Dict[str, Any]:
"""Loads and returns essential environment variables."""
# HF Space Note: Set these as Secrets in your Hugging Face Space settings.
return {
'api_keys': set(filter(None, os.getenv('API_KEYS', '').split(','))), # Use set for faster lookup
'secret_api_endpoint': os.getenv('SECRET_API_ENDPOINT'),
'secret_api_endpoint_2': os.getenv('SECRET_API_ENDPOINT_2'),
'secret_api_endpoint_3': os.getenv('SECRET_API_ENDPOINT_3'), # Search endpoint
'secret_api_endpoint_4': os.getenv('SECRET_API_ENDPOINT_4', "https://text.pollinations.ai/openai"), # Pollinations
'secret_api_endpoint_5': os.getenv('SECRET_API_ENDPOINT_5'), # Claude 3 endpoint
'mistral_api': os.getenv('MISTRAL_API', "https://api.mistral.ai"),
'mistral_key': os.getenv('MISTRAL_KEY'),
'new_img_endpoint': os.getenv('NEW_IMG'), # Image generation endpoint
'hf_space_url': os.getenv('HF_SPACE_URL', 'https://your-space-name.hf.space') # HF Space Note: Set this! Used for Referer/Origin checks.
}
# Model sets for fast lookups
# HF Space Note: Consider moving these large sets to a separate config file (e.g., config.py or models_config.json)
# for better organization if they grow larger.
mistral_models: Set[str] = {
"mistral-large-latest", "pixtral-large-latest", "mistral-moderation-latest",
"ministral-3b-latest", "ministral-8b-latest", "open-mistral-nemo",
"mistral-small-latest", "mistral-saba-latest", "codestral-latest"
}
pollinations_models: Set[str] = {
"openai", "openai-large", "openai-xlarge", "openai-reasoning", "qwen-coder",
"llama", "mistral", "searchgpt", "deepseek", "claude-hybridspace",
"deepseek-r1", "deepseek-reasoner", "llamalight", "gemini", "gemini-thinking",
"hormoz", "phi", "phi-mini", "openai-audio", "llama-scaleway"
}
alternate_models: Set[str] = {
"gpt-4o", "deepseek-v3", "llama-3.1-8b-instruct", "llama-3.1-sonar-small-128k-online",
"deepseek-r1-uncensored", "tinyswallow1.5b", "andy-3.5", "o3-mini-low",
"hermes-3-llama-3.2-3b", "creitin-r1", "fluffy.1-chat", "plutotext-1-text",
"command-a", "claude-3-7-sonnet-20250219", "plutogpt-3.5-turbo"
}
claude_3_models: Set[str] = {
"claude-3-7-sonnet", "claude-3-7-sonnet-thinking", "claude 3.5 haiku",
"claude 3.5 sonnet", "claude 3.5 haiku", "o3-mini-medium", "o3-mini-high",
"grok-3", "grok-3-thinking", "grok 2"
}
supported_image_models: Set[str] = {
"Flux Pro Ultra", "grok-2-aurora", "Flux Pro", "Flux Pro Ultra Raw", "Flux Dev",
"Flux Schnell", "stable-diffusion-3-large-turbo", "Flux Realism",
"stable-diffusion-ultra", "dall-e-3", "sdxl-lightning-4step"
}
# --- Pydantic Models ---
class Message(BaseModel):
role: str
content: Any # Allow content to be string or potentially list for multimodal models
class Payload(BaseModel):
model: str
messages: List[Message]
stream: bool = False
# Add other potential OpenAI compatible parameters with defaults
max_tokens: Optional[int] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
# ... add others as needed
class ImageGenerationPayload(BaseModel):
model: str
prompt: str
size: Optional[str] = "1024x1024" # Default size, make optional if API allows
n: Optional[int] = 1 # Number of images, OpenAI uses 'n'
# HF Space Note: Ensure these parameter names match the target NEW_IMG endpoint API
# Renaming from 'number' to 'n' and 'size' type hint correction.
# --- Global State & Clients ---
server_status: bool = True # For maintenance mode
available_model_ids: List[str] = [] # Loaded at startup
# HF Space Note: Reusable HTTP client with connection pooling is crucial for performance.
# Adjust limits based on expected load and HF Space resources.
@lru_cache(maxsize=1)
def get_async_client() -> httpx.AsyncClient:
"""Returns a cached instance of httpx.AsyncClient."""
# HF Space Note: Timeouts are important to prevent hanging requests.
# Keepalive connections reduce handshake overhead.
timeout = httpx.Timeout(30.0, connect=10.0) # 30s total, 10s connect
limits = httpx.Limits(max_keepalive_connections=20, max_connections=100)
return httpx.AsyncClient(timeout=timeout, limits=limits, follow_redirects=True)
# HF Space Note: cloudscraper pool. Be mindful of potential rate limits or blocks.
# Consider alternatives if this becomes unreliable.
scraper_pool: List[cloudscraper.CloudScraper] = []
MAX_SCRAPERS = 10 # Reduced pool size for potentially lower resource usage
def get_scraper() -> cloudscraper.CloudScraper:
"""Gets a cloudscraper instance from the pool."""
if not scraper_pool:
logger.info(f"Initializing {MAX_SCRAPERS} cloudscraper instances...")
for _ in range(MAX_SCRAPERS):
# HF Space Note: Scraper creation can be slow, doing it upfront is good.
scraper_pool.append(cloudscraper.create_scraper())
logger.info("Cloudscraper pool initialized.")
# Simple round-robin selection
return scraper_pool[int(time.monotonic() * 1000) % MAX_SCRAPERS]
# --- Security & Authentication ---
async def verify_api_key(
request: Request,
api_key: Optional[str] = Security(api_key_header)
) -> bool:
"""Verifies the provided API key against environment variables."""
env_vars = get_env_vars()
valid_api_keys = env_vars.get('api_keys', set())
hf_space_url = env_vars.get('hf_space_url', '')
# Allow bypass if the referer is from the known HF Space playground URLs
# HF Space Note: Make HF_SPACE_URL a secret for flexibility.
referer = request.headers.get("referer", "")
if hf_space_url and referer.startswith((f"{hf_space_url}/playground", f"{hf_space_url}/image-playground")):
logger.debug(f"API Key check bypassed for referer: {referer}")
return True
if not api_key:
logger.warning("API Key missing.")
raise HTTPException(status_code=403, detail="Not authenticated: No API key provided")
# Clean 'Bearer ' prefix if present
if api_key.startswith('Bearer '):
api_key = api_key[7:]
if not valid_api_keys:
logger.error("API keys are not configured on the server (API_KEYS secret missing?).")
raise HTTPException(status_code=500, detail="Server configuration error: API keys not set")
if api_key not in valid_api_keys:
logger.warning(f"Invalid API key received: {api_key[:4]}...") # Log prefix only
raise HTTPException(status_code=403, detail="Not authenticated: Invalid API key")
logger.debug("API Key verified successfully.")
return True
# --- Model & File Loading ---
@lru_cache(maxsize=1)
def load_models_data() -> List[Dict]:
"""Loads model data from models.json."""
# HF Space Note: Ensure models.json is in the root of your HF Space repo.
models_file = Path(__file__).parent / 'models.json'
if not models_file.is_file():
logger.error("models.json not found!")
return []
try:
with open(models_file, 'r') as f:
return json.load(f)
except (FileNotFoundError, json.JSONDecodeError) as e:
logger.error(f"Error loading models.json: {e}")
return []
async def get_models() -> List[Dict]:
"""Async wrapper to get models data."""
models_data = load_models_data()
if not models_data:
raise HTTPException(status_code=500, detail="Error loading available models")
return models_data
# --- Static File Serving ---
# HF Space Note: Cache frequently accessed static files in memory.
@lru_cache(maxsize=10)
def read_static_file(file_path: str) -> Optional[str]:
"""Reads a static file, caching the result."""
full_path = Path(__file__).parent / file_path
if not full_path.is_file():
logger.warning(f"Static file not found: {file_path}")
return None
try:
with open(full_path, "r", encoding="utf-8") as file:
return file.read()
except Exception as e:
logger.error(f"Error reading static file {file_path}: {e}")
return None
async def serve_static_html(file_path: str) -> HTMLResponse:
"""Serves a static HTML file."""
content = read_static_file(file_path)
if content is None:
return HTMLResponse(content=f"<h1>Error: {file_path} not found</h1>", status_code=404)
return HTMLResponse(content=content)
# --- API Endpoints ---
# Basic Routes & Static Files
@app.get("/favicon.ico", include_in_schema=False)
async def favicon():
favicon_path = Path(__file__).parent / "favicon.ico"
if favicon_path.is_file():
return FileResponse(favicon_path, media_type="image/vnd.microsoft.icon")
raise HTTPException(status_code=404, detail="favicon.ico not found")
@app.get("/banner.jpg", include_in_schema=False)
async def banner():
banner_path = Path(__file__).parent / "banner.jpg"
if banner_path.is_file():
return FileResponse(banner_path, media_type="image/jpeg") # Assuming JPEG
raise HTTPException(status_code=404, detail="banner.jpg not found")
@app.get("/ping", tags=["Utility"])
async def ping():
"""Simple health check endpoint."""
return {"message": "pong"}
@app.get("/", response_class=HTMLResponse, tags=["Frontend"])
async def root():
"""Serves the main index HTML page."""
return await serve_static_html("index.html")
@app.get("/script.js", response_class=Response, tags=["Frontend"], include_in_schema=False)
async def script_js():
content = read_static_file("script.js")
if content is None:
return Response(content="/* script.js not found */", status_code=404, media_type="application/javascript")
return Response(content=content, media_type="application/javascript")
@app.get("/style.css", response_class=Response, tags=["Frontend"], include_in_schema=False)
async def style_css():
content = read_static_file("style.css")
if content is None:
return Response(content="/* style.css not found */", status_code=404, media_type="text/css")
return Response(content=content, media_type="text/css")
@app.get("/playground", response_class=HTMLResponse, tags=["Frontend"])
async def playground():
"""Serves the chat playground HTML page."""
return await serve_static_html("playground.html")
@app.get("/image-playground", response_class=HTMLResponse, tags=["Frontend"])
async def image_playground():
"""Serves the image playground HTML page."""
return await serve_static_html("image-playground.html")
# Dynamic Page Example
@app.get("/dynamo", response_class=HTMLResponse, tags=["Examples"])
async def dynamic_ai_page(request: Request):
"""Generates a dynamic HTML page using an AI model (example)."""
# HF Space Note: This uses a hardcoded URL to *itself* if running in the space.
# Ensure the HF_SPACE_URL secret is set correctly.
env_vars = get_env_vars()
hf_space_url = env_vars.get('hf_space_url', '')
if not hf_space_url:
raise HTTPException(status_code=500, detail="HF_SPACE_URL environment variable not set.")
user_agent = request.headers.get('user-agent', 'Unknown')
client_ip = request.client.host if request.client else "Unknown"
location = f"IP: {client_ip}" # Basic IP, location requires GeoIP lookup (extra dependency)
prompt = f"""
Generate a cool, dynamic HTML page for a user with the following details:
- App Name: "LokiAI"
- User-Agent: {user_agent}
- Location Info: {location}
- Style: Cyberpunk aesthetic, minimalist layout, maybe some retro touches.
- Content: Include a heading, a short motivational or witty message, and perhaps a subtle animation. Use inline CSS for styling within a <style> tag.
- Output: Provide ONLY the raw HTML code, starting with <!DOCTYPE html>. Do not wrap it in backticks or add explanations.
"""
payload = {
"model": "mistral-small-latest", # Or another capable model
"messages": [{"role": "user", "content": prompt}],
"max_tokens": 1000,
"temperature": 0.7
}
headers = {
# HF Space Note: Use the space's own URL and a valid API key if required by your setup.
# Here, we assume the playground key bypass works or use a dedicated internal key.
"Authorization": f"Bearer {list(env_vars['api_keys'])[0] if env_vars['api_keys'] else 'dummy-key'}" # Use first key or dummy
}
try:
# HF Space Note: Use the async client for internal requests too.
client = get_async_client()
api_url = f"{hf_space_url}/chat/completions" # Call own endpoint
response = await client.post(api_url, json=payload, headers=headers)
response.raise_for_status() # Raise exception for bad status codes
data = response.json()
html_content = data.get('choices', [{}])[0].get('message', {}).get('content', '')
# Basic cleanup (remove potential markdown backticks if model adds them)
html_content = re.sub(r"^```html\s*", "", html_content, flags=re.IGNORECASE)
html_content = re.sub(r"\s*```$", "", html_content)
if not html_content.strip().lower().startswith("<!doctype html"):
logger.warning("Dynamo page generation might be incomplete or malformed.")
# Optionally return a fallback static page here
return HTMLResponse(content=html_content)
except httpx.HTTPStatusError as e:
logger.error(f"Error calling self API for /dynamo: {e.response.status_code} - {e.response.text}")
raise HTTPException(status_code=502, detail=f"Failed to generate dynamic content: Upstream API error {e.response.status_code}")
except Exception as e:
logger.error(f"Unexpected error in /dynamo: {e}", exc_info=True)
raise HTTPException(status_code=500, detail="Failed to generate dynamic content due to an internal error.")
# Vetra Example (Fetching from GitHub)
# HF Space Note: Ensure outbound requests to raw.githubusercontent.com are allowed.
GITHUB_BASE = "https://raw.githubusercontent.com/Parthsadaria/Vetra/main"
VETRA_FILES = {"html": "index.html", "css": "style.css", "js": "script.js"}
async def get_github_file(filename: str) -> Optional[str]:
"""Fetches a file from the Vetra GitHub repo."""
url = f"{GITHUB_BASE}/{filename}"
try:
client = get_async_client()
res = await client.get(url)
res.raise_for_status()
return res.text
except httpx.RequestError as e:
logger.error(f"Error fetching GitHub file {url}: {e}")
return None
except httpx.HTTPStatusError as e:
logger.error(f"GitHub file {url} returned status {e.response.status_code}")
return None
@app.get("/vetra", response_class=HTMLResponse, tags=["Examples"])
async def serve_vetra():
"""Serves the Vetra application by fetching components from GitHub."""
logger.info("Fetching Vetra files from GitHub...")
# Fetch files concurrently
html_task = asyncio.create_task(get_github_file(VETRA_FILES["html"]))
css_task = asyncio.create_task(get_github_file(VETRA_FILES["css"]))
js_task = asyncio.create_task(get_github_file(VETRA_FILES["js"]))
html, css, js = await asyncio.gather(html_task, css_task, js_task)
if not html:
logger.error("Failed to fetch Vetra index.html")
return HTMLResponse(content="<h1>Error: Could not load Vetra application (HTML missing)</h1>", status_code=502)
# Inject CSS and JS into HTML
css_content = f"<style>{css or '/* CSS failed to load */'}</style>"
js_content = f"<script>{js or '// JS failed to load'}</script>"
# Inject carefully before closing tags
final_html = html.replace("</head>", f"{css_content}\n</head>", 1)
final_html = final_html.replace("</body>", f"{js_content}\n</body>", 1)
logger.info("Successfully served Vetra application.")
return HTMLResponse(content=final_html)
# Model Info Endpoint
@app.get("/api/v1/models", tags=["Models"])
@app.get("/models", tags=["Models"])
async def return_models():
"""Returns the list of available models loaded from models.json."""
# HF Space Note: This endpoint now relies on models.json being present.
# It no longer dynamically adds models defined only in the script's sets.
# Ensure models.json is comprehensive or adjust startup logic if needed.
return await get_models()
# Search Endpoint (using cloudscraper)
# HF Space Note: This uses cloudscraper which might be blocked or require updates.
# Consider replacing with a more stable search API if possible.
async def generate_search_async(query: str, systemprompt: Optional[str] = None) -> asyncio.Queue:
"""Performs search using the configured backend and streams results."""
queue = asyncio.Queue()
env_vars = get_env_vars()
search_endpoint = env_vars.get('secret_api_endpoint_3')
async def _fetch_search_data():
if not search_endpoint:
await queue.put({"error": "Search API endpoint (SECRET_API_ENDPOINT_3) not configured"})
await queue.put(None) # Signal end
return
try:
scraper = get_scraper() # Get a scraper instance from the pool
loop = asyncio.get_running_loop()
system_message = systemprompt or "You are a helpful search assistant."
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": query},
]
payload = {
"model": "searchgpt", # Assuming the endpoint expects this model name
"messages": messages,
"stream": True # Explicitly request streaming from backend
}
headers = {"User-Agent": "Mozilla/5.0"} # Standard user agent
# HF Space Note: Run synchronous scraper call in executor thread
response = await loop.run_in_executor(
executor,
scraper.post,
search_endpoint,
json=payload,
headers=headers,
stream=True # Request streaming from requests library perspective
)
response.raise_for_status()
# Process SSE stream
# HF Space Note: Iterating lines on the response directly can be blocking if not handled carefully.
# Using iter_lines with decode_unicode=True is generally safe.
for line in response.iter_lines(decode_unicode=True):
if line.startswith("data: "):
try:
data_str = line[6:]
if data_str.strip() == "[DONE]": # Check for OpenAI style completion
break
json_data = json.loads(data_str)
# Assuming OpenAI compatible streaming format
delta = json_data.get("choices", [{}])[0].get("delta", {})
content = delta.get("content")
if content:
# Reconstruct OpenAI-like SSE chunk
chunk = {
"id": json_data.get("id"),
"object": "chat.completion.chunk",
"created": json_data.get("created", int(time.time())),
"model": "searchgpt",
"choices": [{"index": 0, "delta": {"content": content}, "finish_reason": None}]
}
await queue.put({"data": f"data: {json.dumps(chunk)}\n\n", "text": content})
# Check for finish reason
finish_reason = json_data.get("choices", [{}])[0].get("finish_reason")
if finish_reason:
chunk = {
"id": json_data.get("id"),
"object": "chat.completion.chunk",
"created": json_data.get("created", int(time.time())),
"model": "searchgpt",
"choices": [{"index": 0, "delta": {}, "finish_reason": finish_reason}]
}
await queue.put({"data": f"data: {json.dumps(chunk)}\n\n", "text": ""})
break # Stop processing after finish reason
except json.JSONDecodeError:
logger.warning(f"Failed to decode JSON from search stream: {line}")
continue
except Exception as e:
logger.error(f"Error processing search stream chunk: {e}", exc_info=True)
await queue.put({"error": f"Error processing stream: {e}"})
break # Stop on processing error
except requests.exceptions.RequestException as e:
logger.error(f"Search request failed: {e}")
await queue.put({"error": f"Search request failed: {e}"})
except Exception as e:
logger.error(f"Unexpected error during search: {e}", exc_info=True)
await queue.put({"error": f"An unexpected error occurred during search: {e}"})
finally:
await queue.put(None) # Signal completion
asyncio.create_task(_fetch_search_data())
return queue
@app.get("/searchgpt", tags=["Search"])
async def search_gpt(q: str, stream: bool = True, systemprompt: Optional[str] = None):
"""
Performs a search using the backend search model and streams results.
Pass `stream=false` to get the full response at once.
"""
if not q:
raise HTTPException(status_code=400, detail="Query parameter 'q' is required")
# HF Space Note: Ensure usage_tracker is thread-safe if used across async/sync boundaries.
# The dummy tracker used when the module isn't found is safe.
usage_tracker.record_request(endpoint="/searchgpt")
queue = await generate_search_async(q, systemprompt=systemprompt)
if stream:
async def stream_generator():
full_response_text = "" # Keep track for non-streaming case if needed
while True:
item = await queue.get()
if item is None: # End of stream signal
break
if "error" in item:
# HF Space Note: Log errors server-side, return generic error to client for security.
logger.error(f"Search stream error: {item['error']}")
# Send an error event in the stream
error_event = {"error": {"message": "Search failed.", "code": 500}}
yield f"data: {json.dumps(error_event)}\n\n"
break
if "data" in item:
yield item["data"]
full_response_text += item.get("text", "")
# Optionally yield a [DONE] message if backend doesn't guarantee it
# yield "data: [DONE]\n\n"
return StreamingResponse(
stream_generator(),
media_type="text/event-stream",
headers={
"Content-Type": "text/event-stream",
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no" # Crucial for Nginx/proxies in HF Spaces
}
)
else:
# Collect full response for non-streaming request
full_response_text = ""
while True:
item = await queue.get()
if item is None:
break
if "error" in item:
logger.error(f"Search non-stream error: {item['error']}")
raise HTTPException(status_code=502, detail=f"Search failed: {item['error']}")
full_response_text += item.get("text", "")
# Mimic OpenAI non-streaming response structure
return JSONResponse(content={
"id": f"search-{int(time.time())}",
"object": "chat.completion",
"created": int(time.time()),
"model": "searchgpt",
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": full_response_text,
},
"finish_reason": "stop",
}],
"usage": { # Note: Token usage is unknown here
"prompt_tokens": None,
"completion_tokens": None,
"total_tokens": None,
}
})
# Main Chat Completions Proxy
@app.post("/api/v1/chat/completions", tags=["Chat Completions"])
@app.post("/chat/completions", tags=["Chat Completions"])
async def get_completion(
payload: Payload,
request: Request,
authenticated: bool = Depends(verify_api_key) # Apply authentication
):
"""
Proxies chat completion requests to the appropriate backend API based on the model.
Supports streaming (SSE).
"""
if not server_status:
raise HTTPException(status_code=503, detail="Server is under maintenance.")
model_to_use = payload.model or "gpt-4o-mini" # Default model
# HF Space Note: Check against models loaded at startup.
if available_model_ids and model_to_use not in available_model_ids:
logger.warning(f"Requested model '{model_to_use}' not in available list.")
# Check if it's a known category even if not explicitly in models.json
known_categories = mistral_models | pollinations_models | alternate_models | claude_3_models
if model_to_use not in known_categories:
raise HTTPException(
status_code=400,
detail=f"Model '{model_to_use}' is not available or recognized. Check /models."
)
else:
logger.info(f"Allowing known category model '{model_to_use}' despite not being in models.json.")
# Log request asynchronously
asyncio.create_task(log_request(request, model_to_use))
usage_tracker.record_request(model=model_to_use, endpoint="/chat/completions")
# Prepare payload for the target API
payload_dict = payload.dict(exclude_none=True) # Exclude None values
payload_dict["model"] = model_to_use # Ensure model is set
env_vars = get_env_vars()
hf_space_url = env_vars.get('hf_space_url', '') # Needed for Referer/Origin
# Determine target endpoint and headers
endpoint = None
custom_headers = {}
if model_to_use in mistral_models:
endpoint = env_vars.get('mistral_api')
api_key = env_vars.get('mistral_key')
if not endpoint or not api_key:
raise HTTPException(status_code=500, detail="Mistral API endpoint or key not configured.")
custom_headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json", "Accept": "application/json"}
# Mistral specific adjustments if needed
# payload_dict.pop('system', None) # Example: if Mistral doesn't use 'system' role
elif model_to_use in pollinations_models:
endpoint = env_vars.get('secret_api_endpoint_4')
if not endpoint:
raise HTTPException(status_code=500, detail="Pollinations API endpoint (SECRET_API_ENDPOINT_4) not configured.")
# Pollinations might need specific headers? Add them here.
custom_headers = {"Content-Type": "application/json"}
elif model_to_use in alternate_models:
endpoint = env_vars.get('secret_api_endpoint_2')
if not endpoint:
raise HTTPException(status_code=500, detail="Alternate API endpoint (SECRET_API_ENDPOINT_2) not configured.")
custom_headers = {"Content-Type": "application/json"}
elif model_to_use in claude_3_models:
endpoint = env_vars.get('secret_api_endpoint_5')
if not endpoint:
raise HTTPException(status_code=500, detail="Claude 3 API endpoint (SECRET_API_ENDPOINT_5) not configured.")
custom_headers = {"Content-Type": "application/json"}
# Claude specific headers (like anthropic-version) might be needed
# custom_headers["anthropic-version"] = "2023-06-01"
else: # Default endpoint
endpoint = env_vars.get('secret_api_endpoint')
if not endpoint:
raise HTTPException(status_code=500, detail="Default API endpoint (SECRET_API_ENDPOINT) not configured.")
# Default endpoint might need Origin/Referer
if hf_space_url:
custom_headers = {
"Origin": hf_space_url,
"Referer": hf_space_url,
"Content-Type": "application/json"
}
else:
custom_headers = {"Content-Type": "application/json"}
target_url = f"{endpoint.rstrip('/')}/v1/chat/completions" # Assume OpenAI compatible path
logger.info(f"Proxying request for model '{model_to_use}' to endpoint: {endpoint}")
client = get_async_client()
async def stream_generator():
"""Generator for streaming the response."""
nonlocal target_url # Allow modification if needed
try:
async with client.stream("POST", target_url, json=payload_dict, headers=custom_headers) as response:
# Check for initial errors before streaming
if response.status_code >= 400:
error_body = await response.aread()
logger.error(f"Upstream API error: {response.status_code} - {error_body.decode()}")
# Try to parse error detail from upstream
detail = f"Upstream API error: {response.status_code}"
try:
error_json = json.loads(error_body)
detail = error_json.get('error', {}).get('message', detail)
except json.JSONDecodeError:
pass
# Send error as SSE event
error_event = {"error": {"message": detail, "code": response.status_code}}
yield f"data: {json.dumps(error_event)}\n\n"
return # Stop generation
# Stream the response line by line
async for line in response.aiter_lines():
if line:
# Pass through the data directly
yield line + "\n"
# Ensure stream is properly closed, yield [DONE] if backend doesn't
# Some backends might not send [DONE], uncomment if needed
# yield "data: [DONE]\n\n"
except httpx.TimeoutException:
logger.error(f"Request to {target_url} timed out.")
error_event = {"error": {"message": "Request timed out", "code": 504}}
yield f"data: {json.dumps(error_event)}\n\n"
except httpx.RequestError as e:
logger.error(f"Failed to connect to upstream API {target_url}: {e}")
error_event = {"error": {"message": f"Upstream connection error: {e}", "code": 502}}
yield f"data: {json.dumps(error_event)}\n\n"
except Exception as e:
logger.error(f"An unexpected error occurred during streaming proxy: {e}", exc_info=True)
error_event = {"error": {"message": f"Internal server error: {e}", "code": 500}}
yield f"data: {json.dumps(error_event)}\n\n"
if payload.stream:
return StreamingResponse(
stream_generator(),
media_type="text/event-stream",
headers={
"Content-Type": "text/event-stream",
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no" # Essential for HF Spaces proxying SSE
}
)
else:
# Handle non-streaming request by collecting the streamed chunks
full_response_content = ""
final_json_response = None
async for line in stream_generator():
if line.startswith("data: "):
data_str = line[6:].strip()
if data_str == "[DONE]":
break
try:
chunk = json.loads(data_str)
# Check for error chunk
if "error" in chunk:
logger.error(f"Received error during non-stream collection: {chunk['error']}")
raise HTTPException(status_code=chunk['error'].get('code', 502), detail=chunk['error'].get('message', 'Upstream API error'))
# Accumulate content from delta
delta = chunk.get("choices", [{}])[0].get("delta", {})
content = delta.get("content")
if content:
full_response_content += content
# Store the last chunk structure to reconstruct the final response
# We assume the last chunk contains necessary info like id, model, etc.
# but we overwrite the choices/message part.
final_json_response = chunk # Keep the structure
# Check for finish reason
finish_reason = chunk.get("choices", [{}])[0].get("finish_reason")
if finish_reason:
break # Stop collecting
except json.JSONDecodeError:
logger.warning(f"Could not decode JSON chunk in non-stream mode: {data_str}")
except Exception as e:
logger.error(f"Error processing chunk in non-stream mode: {e}")
raise HTTPException(status_code=500, detail="Error processing response stream.")
if final_json_response is None:
# Handle cases where no valid data chunks were received
logger.error("No valid response chunks received for non-streaming request.")
raise HTTPException(status_code=502, detail="Failed to get valid response from upstream API.")
# Reconstruct OpenAI-like non-streaming response
final_response_obj = {
"id": final_json_response.get("id", f"chatcmpl-{int(time.time())}"),
"object": "chat.completion",
"created": final_json_response.get("created", int(time.time())),
"model": model_to_use, # Use the requested model
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": full_response_content,
},
"finish_reason": final_json_response.get("choices", [{}])[0].get("finish_reason", "stop"), # Get finish reason from last chunk
}],
"usage": { # Token usage might be in the last chunk for some APIs, otherwise unknown
"prompt_tokens": None,
"completion_tokens": None,
"total_tokens": None,
}
}
# Attempt to extract usage if present in the (potentially non-standard) final chunk
usage_data = final_json_response.get("usage")
if isinstance(usage_data, dict):
final_response_obj["usage"].update(usage_data)
return JSONResponse(content=final_response_obj)
# Image Generation Endpoint
@app.post("/images/generations", tags=["Image Generation"])
async def create_image(
payload: ImageGenerationPayload,
authenticated: bool = Depends(verify_api_key)
):
"""
Generates images based on a text prompt using the configured backend.
"""
if not server_status:
raise HTTPException(status_code=503, detail="Server is under maintenance.")
if payload.model not in supported_image_models:
raise HTTPException(
status_code=400,
detail=f"Model '{payload.model}' is not supported for image generation. Supported: {', '.join(supported_image_models)}"
)
usage_tracker.record_request(model=payload.model, endpoint="/images/generations")
env_vars = get_env_vars()
target_api_url = env_vars.get('new_img_endpoint')
if not target_api_url:
raise HTTPException(status_code=500, detail="Image generation endpoint (NEW_IMG) not configured.")
# Prepare payload for the target API (adjust keys if needed)
# HF Space Note: Ensure the keys match the actual API expected by NEW_IMG endpoint.
# Assuming it's OpenAI compatible here.
api_payload = {
"model": payload.model,
"prompt": payload.prompt,
"n": payload.n,
"size": payload.size
}
# Remove None values the target API might not like
api_payload = {k: v for k, v in api_payload.items() if v is not None}
logger.info(f"Requesting image generation for model '{payload.model}' from {target_api_url}")
client = get_async_client()
try:
# HF Space Note: Image generation can take time, use a longer timeout if needed.
# Consider making this truly async if the backend supports webhooks or polling.
response = await client.post(target_api_url, json=api_payload, timeout=120.0) # 2 min timeout
response.raise_for_status() # Raise HTTP errors
# Return the exact response from the backend
return JSONResponse(content=response.json())
except httpx.TimeoutException:
logger.error(f"Image generation request to {target_api_url} timed out.")
raise HTTPException(status_code=504, detail="Image generation request timed out.")
except httpx.HTTPStatusError as e:
logger.error(f"Image generation API error: {e.response.status_code} - {e.response.text}")
detail = f"Image generation failed: Upstream API error {e.response.status_code}"
try:
err_json = e.response.json()
detail = err_json.get('error', {}).get('message', detail)
except json.JSONDecodeError:
pass
raise HTTPException(status_code=e.response.status_code, detail=detail)
except httpx.RequestError as e:
logger.error(f"Error connecting to image generation service {target_api_url}: {e}")
raise HTTPException(status_code=502, detail=f"Error connecting to image generation service: {e}")
except Exception as e:
logger.error(f"Unexpected error during image generation: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=f"An unexpected error occurred during image generation: {e}")
# --- Utility & Admin Endpoints ---
async def log_request(request: Request, model: Optional[str] = None):
"""Logs basic request information asynchronously."""
# HF Space Note: Avoid logging sensitive info like full IP or headers unless necessary.
# Hashing IP provides some privacy.
client_host = request.client.host if request.client else "unknown"
ip_hash = hash(client_host) % 10000
timestamp = datetime.datetime.now(datetime.timezone.utc).strftime("%Y-%m-%d %H:%M:%S %Z")
log_message = f"Timestamp: {timestamp}, IP Hash: {ip_hash}, Method: {request.method}, Path: {request.url.path}"
if model:
log_message += f", Model: {model}"
logger.info(log_message)
@app.get("/usage", tags=["Admin"])
async def get_usage(days: int = 7):
"""Retrieves aggregated usage statistics."""
# HF Space Note: Ensure usage_tracker methods are efficient, especially get_usage_summary.
# Caching might be needed if it becomes slow.
if days <= 0:
raise HTTPException(status_code=400, detail="Number of days must be positive.")
try:
# Run potentially CPU-bound summary generation in executor
loop = asyncio.get_running_loop()
summary = await loop.run_in_executor(executor, usage_tracker.get_usage_summary, days)
return summary
except Exception as e:
logger.error(f"Error retrieving usage statistics: {e}", exc_info=True)
raise HTTPException(status_code=500, detail="Failed to retrieve usage statistics.")
# HF Space Note: Generating HTML dynamically can be resource-intensive.
# Consider caching the generated HTML or serving a static page updated periodically.
def generate_usage_html(usage_data: Dict) -> str:
"""Generates an HTML report from usage data."""
# (Keep the HTML generation logic as provided in the original file)
# ... (rest of the HTML generation code from the original file) ...
# Ensure this function handles potentially missing keys gracefully
models_usage = usage_data.get('models', {})
endpoints_usage = usage_data.get('api_endpoints', {})
daily_usage = usage_data.get('recent_daily_usage', {})
total_requests = usage_data.get('total_requests', 0)
model_usage_rows = "\n".join([
f"""
<tr>
<td>{model}</td>
<td>{model_data.get('total_requests', 'N/A')}</td>
<td>{model_data.get('first_used', 'N/A')}</td>
<td>{model_data.get('last_used', 'N/A')}</td>
</tr>
""" for model, model_data in models_usage.items()
]) if models_usage else "<tr><td colspan='4'>No model usage data</td></tr>"
api_usage_rows = "\n".join([
f"""
<tr>
<td>{endpoint}</td>
<td>{endpoint_data.get('total_requests', 'N/A')}</td>
<td>{endpoint_data.get('first_used', 'N/A')}</td>
<td>{endpoint_data.get('last_used', 'N/A')}</td>
</tr>
""" for endpoint, endpoint_data in endpoints_usage.items()
]) if endpoints_usage else "<tr><td colspan='4'>No API endpoint usage data</td></tr>"
daily_usage_rows = "\n".join([
f"""
<tr>
<td>{date}</td>
<td>{entity}</td>
<td>{requests}</td>
</tr>
"""
for date, date_data in daily_usage.items()
for entity, requests in date_data.items()
]) if daily_usage else "<tr><td colspan='3'>No daily usage data</td></tr>"
# HF Space Note: Using f-string for large HTML is okay, but consider template engines (Jinja2)
# for more complex pages. Ensure CSS/JS are either inline or served via separate endpoints.
html_content = f"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Lokiai AI - Usage Statistics</title>
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600&display=swap" rel="stylesheet">
<style>
/* (Keep the CSS styles as provided in the original file) */
:root {{
--bg-dark: #0f1011; --bg-darker: #070708; --text-primary: #e6e6e6;
--text-secondary: #8c8c8c; --border-color: #2c2c2c; --accent-color: #3a6ee0;
--accent-hover: #4a7ef0;
}}
body {{ font-family: 'Inter', sans-serif; background-color: var(--bg-dark); color: var(--text-primary); max-width: 1200px; margin: 0 auto; padding: 40px 20px; line-height: 1.6; }}
.logo {{ display: flex; align-items: center; justify-content: center; margin-bottom: 30px; }}
.logo h1 {{ font-weight: 600; font-size: 2.5em; color: var(--text-primary); margin-left: 15px; }}
.logo img {{ width: 60px; height: 60px; border-radius: 10px; }}
.container {{ background-color: var(--bg-darker); border-radius: 12px; padding: 30px; box-shadow: 0 15px 40px rgba(0,0,0,0.3); border: 1px solid var(--border-color); }}
h2, h3 {{ color: var(--text-primary); border-bottom: 2px solid var(--border-color); padding-bottom: 10px; font-weight: 500; }}
.total-requests {{ background-color: var(--accent-color); color: white; text-align: center; padding: 15px; border-radius: 8px; margin-bottom: 30px; font-weight: 600; letter-spacing: -0.5px; }}
table {{ width: 100%; border-collapse: separate; border-spacing: 0; margin-bottom: 30px; background-color: var(--bg-dark); border-radius: 8px; overflow: hidden; }}
th, td {{ border: 1px solid var(--border-color); padding: 12px; text-align: left; transition: background-color 0.3s ease; }}
th {{ background-color: #1e1e1e; color: var(--text-primary); font-weight: 600; text-transform: uppercase; font-size: 0.9em; }}
tr:nth-child(even) {{ background-color: rgba(255,255,255,0.05); }}
tr:hover {{ background-color: rgba(62,100,255,0.1); }}
@media (max-width: 768px) {{ .container {{ padding: 15px; }} table {{ font-size: 0.9em; }} }}
</style>
</head>
<body>
<div class="container">
<div class="logo">
<img src="" alt="Lokai AI Logo">
<h1>Lokiai AI Usage</h1>
</div>
<div class="total-requests">
Total API Requests Recorded: {total_requests}
</div>
<h2>Model Usage</h2>
<table>
<thead><tr><th>Model</th><th>Total Requests</th><th>First Used</th><th>Last Used</th></tr></thead>
<tbody>{model_usage_rows}</tbody>
</table>
<h2>API Endpoint Usage</h2>
<table>
<thead><tr><th>Endpoint</th><th>Total Requests</th><th>First Used</th><th>Last Used</th></tr></thead>
<tbody>{api_usage_rows}</tbody>
</table>
<h2>Daily Usage (Last {usage_data.get('days_analyzed', 7)} Days)</h2>
<table>
<thead><tr><th>Date</th><th>Entity (Model/Endpoint)</th><th>Requests</th></tr></thead>
<tbody>{daily_usage_rows}</tbody>
</table>
</div>
</body>
</html>
"""
return html_content
# HF Space Note: Caching the generated HTML page can save resources.
# Invalidate cache periodically or when usage data changes significantly.
usage_html_cache = {"content": None, "timestamp": 0}
CACHE_DURATION = 300 # Cache usage page for 5 minutes
@app.get("/usage/page", response_class=HTMLResponse, tags=["Admin"])
async def usage_page():
"""Serves an HTML page showing usage statistics."""
now = time.monotonic()
if usage_html_cache["content"] and (now - usage_html_cache["timestamp"] < CACHE_DURATION):
logger.info("Serving cached usage page.")
return HTMLResponse(content=usage_html_cache["content"])
logger.info("Generating fresh usage page.")
try:
# Run potentially slow parts in executor
loop = asyncio.get_running_loop()
usage_data = await loop.run_in_executor(executor, usage_tracker.get_usage_summary, 7) # Get data for 7 days
html_content = await loop.run_in_executor(executor, generate_usage_html, usage_data)
# Update cache
usage_html_cache["content"] = html_content
usage_html_cache["timestamp"] = now
return HTMLResponse(content=html_content)
except Exception as e:
logger.error(f"Failed to generate usage page: {e}", exc_info=True)
# Serve stale cache if available, otherwise error
if usage_html_cache["content"]:
logger.warning("Serving stale usage page due to generation error.")
return HTMLResponse(content=usage_html_cache["content"])
else:
raise HTTPException(status_code=500, detail="Failed to generate usage statistics page.")
# Meme Endpoint
@app.get("/meme", tags=["Fun"])
async def get_meme():
"""Fetches a random meme and streams the image."""
# HF Space Note: Ensure meme-api.com is accessible from the HF Space network.
client = get_async_client()
meme_api_url = "https://meme-api.com/gimme"
try:
logger.info("Fetching meme info...")
response = await client.get(meme_api_url)
response.raise_for_status()
response_data = response.json()
meme_url = response_data.get("url")
if not meme_url or not isinstance(meme_url, str):
logger.error(f"Invalid meme URL received from API: {meme_url}")
raise HTTPException(status_code=502, detail="Failed to get valid meme URL from API.")
logger.info(f"Fetching meme image: {meme_url}")
# Use streaming request for the image itself
async with client.stream("GET", meme_url) as image_response:
image_response.raise_for_status() # Check if image URL is valid
# Get content type, default to image/png
media_type = image_response.headers.get("content-type", "image/png")
if not media_type.startswith("image/"):
logger.warning(f"Unexpected content type '{media_type}' for meme URL: {meme_url}")
# You might want to reject non-image types
# raise HTTPException(status_code=502, detail="Meme URL did not return an image.")
# Stream the image content directly
return StreamingResponse(
image_response.aiter_bytes(),
media_type=media_type,
headers={'Cache-Control': 'no-cache'} # Don't cache the meme itself heavily
)
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error fetching meme ({e.request.url}): {e.response.status_code}")
raise HTTPException(status_code=502, detail=f"Failed to fetch meme (HTTP {e.response.status_code})")
except httpx.RequestError as e:
logger.error(f"Network error fetching meme ({e.request.url}): {e}")
raise HTTPException(status_code=502, detail="Failed to fetch meme (Network Error)")
except Exception as e:
logger.error(f"Unexpected error fetching meme: {e}", exc_info=True)
raise HTTPException(status_code=500, detail="Failed to retrieve meme due to an internal error.")
# Health Check Endpoint
@app.get("/health", tags=["Utility"])
async def health_check():
"""Provides a health check status, including missing critical configurations."""
env_vars = get_env_vars()
missing_critical_vars = []
# Define critical vars needed for core functionality
critical_vars = [
'api_keys', 'secret_api_endpoint', 'secret_api_endpoint_2',
'secret_api_endpoint_3', 'secret_api_endpoint_4', 'secret_api_endpoint_5',
'new_img_endpoint', 'hf_space_url'
]
# Conditionally critical vars
if any(model in mistral_models for model in available_model_ids):
critical_vars.extend(['mistral_api', 'mistral_key'])
for var_name in critical_vars:
value = env_vars.get(var_name)
# Check for None or empty strings/lists/sets
if value is None or (isinstance(value, (str, list, set)) and not value):
missing_critical_vars.append(var_name)
is_healthy = not missing_critical_vars and server_status
status_code = 200 if is_healthy else 503 # Service Unavailable if unhealthy
health_status = {
"status": "healthy" if is_healthy else "unhealthy",
"server_mode": "online" if server_status else "maintenance",
"missing_critical_env_vars": missing_critical_vars,
"details": "All critical configurations seem okay. Ready to roll! πŸš€" if is_healthy else "Service issues detected. Check missing env vars or server status. πŸ› οΈ"
}
return JSONResponse(content=health_status, status_code=status_code)
# --- Startup and Shutdown Events ---
@app.on_event("startup")
async def startup_event():
"""Tasks to run when the application starts."""
global available_model_ids
logger.info("Application startup sequence initiated...")
# Load models from JSON
models_from_file = load_models_data()
model_ids_from_file = {model['id'] for model in models_from_file if 'id' in model}
# Combine models from file and predefined sets
predefined_model_sets = mistral_models | pollinations_models | alternate_models | claude_3_models
all_model_ids = model_ids_from_file.union(predefined_model_sets)
available_model_ids = sorted(list(all_model_ids)) # Keep as sorted list
logger.info(f"Loaded {len(model_ids_from_file)} models from models.json.")
logger.info(f"Total {len(available_model_ids)} unique models available.")
# Initialize scraper pool (can take time)
# HF Space Note: Run potentially blocking I/O in executor during startup
loop = asyncio.get_running_loop()
await loop.run_in_executor(executor, get_scraper) # This initializes the pool
# Validate critical environment variables and log warnings
env_vars = get_env_vars()
logger.info("Checking critical environment variables (Secrets)...")
await health_check() # Run health check logic to log warnings
# Pre-connect async client? Optional, httpx handles connections on demand.
# client = get_async_client()
# await client.get("https://www.google.com") # Example warm-up call
logger.info("Startup complete. Server is ready to accept requests.")
@app.on_event("shutdown")
async def shutdown_event():
"""Tasks to run when the application shuts down."""
logger.info("Application shutdown sequence initiated...")
# Close the httpx client gracefully
client = get_async_client()
await client.aclose()
logger.info("HTTP client closed.")
# Shutdown the thread pool executor
executor.shutdown(wait=True)
logger.info("Thread pool executor shut down.")
# Clear scraper pool (optional, resources will be reclaimed anyway)
scraper_pool.clear()
logger.info("Scraper pool cleared.")
# Persist usage data
# HF Space Note: Ensure file system is writable if saving locally.
# Consider using HF Datasets or external DB for persistent storage.
try:
logger.info("Saving usage data...")
usage_tracker.save_data()
logger.info("Usage data saved.")
except Exception as e:
logger.error(f"Failed to save usage data during shutdown: {e}")
logger.info("Shutdown complete.")
# --- Main Execution Block ---
# HF Space Note: This block is mainly for local testing.
# HF Spaces usually run the app using `uvicorn main:app --host 0.0.0.0 --port 7860` (or similar)
# defined in the README metadata or a Procfile.
if __name__ == "__main__":
import uvicorn
logger.info("Starting server locally with uvicorn...")
# HF Space Note: Port 7860 is the default for HF Spaces. Host 0.0.0.0 is required.
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")