File size: 57,447 Bytes
4986fe4
342885c
a111cf9
31eab42
aee7d80
c3d5a54
74e8abb
 
 
 
396b35b
74e8abb
 
 
 
 
 
 
 
 
396b35b
 
74e8abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
396b35b
 
74e8abb
 
 
a06f1b3
74e8abb
 
c3d5a54
dc21031
74e8abb
 
 
 
 
c3d5a54
a06f1b3
74e8abb
4986fe4
74e8abb
 
 
 
 
c3d5a54
74e8abb
 
396b35b
74e8abb
 
396b35b
 
 
 
 
74e8abb
 
 
 
 
 
c3d5a54
74e8abb
c3d5a54
 
74e8abb
 
 
 
c3d5a54
74e8abb
 
c3d5a54
 
74e8abb
 
 
 
 
 
 
396b35b
20b41cb
74e8abb
 
 
 
 
9b57c30
 
74e8abb
 
 
 
 
c2e84c8
378f2c3
74e8abb
 
 
 
49e4129
 
74e8abb
 
 
 
ab07513
 
74e8abb
 
 
 
 
f2d8224
378f2c3
 
74e8abb
16f4d5b
74e8abb
 
 
 
 
c3d5a54
ab07513
 
 
74e8abb
 
 
 
ab07513
74e8abb
ab07513
74e8abb
 
ab07513
74e8abb
 
c3d5a54
74e8abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
396b35b
74e8abb
396b35b
74e8abb
396b35b
74e8abb
 
 
ab07513
74e8abb
396b35b
b2ec9cb
 
74e8abb
b2ec9cb
74e8abb
 
 
 
 
 
 
b2ec9cb
74e8abb
 
b2ec9cb
74e8abb
c3d5a54
74e8abb
 
 
 
c3d5a54
74e8abb
 
 
 
 
 
 
 
 
 
 
c3d5a54
 
74e8abb
 
c3d5a54
74e8abb
 
 
 
 
 
 
c3d5a54
74e8abb
c3d5a54
 
74e8abb
396b35b
 
74e8abb
 
396b35b
 
c3d5a54
396b35b
c3d5a54
74e8abb
ab07513
74e8abb
396b35b
74e8abb
 
 
 
 
 
396b35b
74e8abb
396b35b
74e8abb
 
396b35b
a01be99
74e8abb
 
 
 
 
 
c3d5a54
74e8abb
ab07513
74e8abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
707dc28
74e8abb
 
c3d5a54
74e8abb
7ef5d89
74e8abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
796bb21
74e8abb
 
 
 
 
 
 
 
 
 
 
 
796bb21
74e8abb
 
796bb21
74e8abb
 
 
 
796bb21
74e8abb
796bb21
74e8abb
 
 
 
796bb21
 
74e8abb
 
 
796bb21
9b460f3
74e8abb
 
 
 
 
 
 
 
 
9b460f3
74e8abb
 
 
9b460f3
74e8abb
 
 
9b460f3
74e8abb
9b460f3
74e8abb
 
 
 
 
 
 
 
 
 
 
 
9b460f3
74e8abb
 
9b460f3
74e8abb
 
9b460f3
74e8abb
 
 
 
 
 
 
 
9b460f3
74e8abb
9b460f3
74e8abb
 
 
 
 
 
 
 
9b460f3
 
74e8abb
 
 
 
 
 
9b460f3
74e8abb
 
 
9b460f3
74e8abb
9b460f3
 
 
74e8abb
 
 
 
 
 
 
 
 
9b460f3
74e8abb
 
 
 
 
 
 
 
9b460f3
74e8abb
 
 
 
 
9b460f3
74e8abb
 
 
c3d5a54
74e8abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d5a54
 
ab07513
74e8abb
 
c3d5a54
ab07513
74e8abb
ab07513
c3d5a54
396b35b
74e8abb
4bcb2c2
 
74e8abb
4bcb2c2
 
74e8abb
 
 
 
 
4bcb2c2
 
 
74e8abb
 
 
ab07513
c3d5a54
396b35b
74e8abb
 
 
 
 
 
 
c3d5a54
 
74e8abb
 
4bcb2c2
 
 
 
 
74e8abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab07513
 
74e8abb
 
 
 
 
 
 
 
 
 
 
 
c3d5a54
74e8abb
ab07513
74e8abb
de98206
74e8abb
 
 
 
 
 
 
 
 
 
 
 
de98206
74e8abb
 
396b35b
eefae44
de98206
74e8abb
 
 
ab07513
c3d5a54
74e8abb
 
 
 
 
c3d5a54
de98206
74e8abb
 
 
 
 
 
 
 
9b57c30
74e8abb
 
 
 
 
 
de98206
74e8abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab07513
74e8abb
 
ab07513
74e8abb
 
 
 
 
1d32d66
74e8abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bcb2c2
74e8abb
 
 
4bcb2c2
74e8abb
 
 
1d32d66
74e8abb
 
 
c3d5a54
74e8abb
8ef5ca7
74e8abb
4bcb2c2
 
 
 
 
74e8abb
4bcb2c2
8ef5ca7
4bcb2c2
74e8abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab07513
4bcb2c2
74e8abb
ab07513
 
74e8abb
 
 
 
 
 
ab07513
74e8abb
ab07513
 
74e8abb
ab07513
 
 
 
74e8abb
ab07513
 
 
 
74e8abb
 
 
 
 
 
 
 
ab07513
 
 
74e8abb
 
ab07513
74e8abb
 
ab07513
 
74e8abb
 
ab07513
74e8abb
 
 
 
 
ab07513
74e8abb
ab07513
 
 
74e8abb
ab07513
74e8abb
 
 
 
 
 
 
 
 
ab07513
74e8abb
ab07513
 
74e8abb
ab07513
 
 
74e8abb
ab07513
74e8abb
 
 
 
 
 
 
 
 
 
 
396b35b
 
74e8abb
ea75284
74e8abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea75284
314966f
 
 
 
74e8abb
 
 
314966f
74e8abb
 
ab07513
314966f
 
 
 
74e8abb
 
 
314966f
74e8abb
 
ab07513
314966f
74e8abb
 
 
 
 
 
 
 
 
 
ab07513
74e8abb
 
 
ea75284
 
 
 
 
74e8abb
4f22928
c20175b
ea75284
74e8abb
c20175b
74e8abb
 
c20175b
 
74e8abb
 
 
 
 
 
 
 
 
 
 
 
 
ea75284
 
 
c20175b
 
 
74e8abb
c20175b
ab07513
c20175b
74e8abb
c20175b
ab07513
c20175b
 
74e8abb
 
c20175b
ab07513
c20175b
 
74e8abb
 
c20175b
ab07513
74e8abb
c20175b
74e8abb
 
c20175b
 
ea75284
 
 
396b35b
 
74e8abb
 
 
 
396b35b
74e8abb
396b35b
74e8abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ab4453
74e8abb
 
4bcb2c2
74e8abb
 
 
 
4bcb2c2
74e8abb
 
 
4bcb2c2
 
 
74e8abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bcb2c2
ab07513
74e8abb
 
 
 
 
 
ab07513
74e8abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab07513
74e8abb
 
 
 
 
 
 
ab07513
4bcb2c2
74e8abb
c3d5a54
7ef5d89
 
74e8abb
72b5133
74e8abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3d5a54
74e8abb
 
 
 
 
 
 
 
 
9b57c30
 
 
74e8abb
 
 
 
9b57c30
 
74e8abb
 
 
 
 
ab07513
74e8abb
9b57c30
74e8abb
ab07513
9b57c30
74e8abb
 
 
 
 
 
 
 
ab07513
74e8abb
ab07513
9b57c30
74e8abb
 
 
 
6a84e5c
 
74e8abb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
import os
import re
import json
import datetime
import time
import asyncio
import logging
from pathlib import Path
from functools import lru_cache
from typing import Optional, Dict, List, Any, Generator, Set
from concurrent.futures import ThreadPoolExecutor

# Third-party libraries (ensure these are in requirements.txt)
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException, Request, Depends, Security, Response
from fastapi.responses import StreamingResponse, HTMLResponse, JSONResponse, FileResponse
from fastapi.security import APIKeyHeader
from pydantic import BaseModel
import httpx
import uvloop # Use uvloop for performance
from fastapi.middleware.gzip import GZipMiddleware
from starlette.middleware.cors import CORSMiddleware
import cloudscraper # For bypassing Cloudflare, potentially unreliable
import requests # For synchronous requests like in /dynamo

# HF Space Note: Ensure usage_tracker.py is in your repository
try:
    from usage_tracker import UsageTracker
    usage_tracker = UsageTracker()
except ImportError:
    print("Warning: usage_tracker.py not found. Usage tracking will be disabled.")
    # Create a dummy tracker if the file is missing
    class DummyUsageTracker:
        def record_request(self, *args, **kwargs): pass
        def get_usage_summary(self, *args, **kwargs): return {}
        def save_data(self, *args, **kwargs): pass
    usage_tracker = DummyUsageTracker()


# --- Configuration & Setup ---

# HF Space Note: uvloop can improve performance in I/O bound tasks common in web apps.
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())

# HF Space Note: Adjust max_workers based on your HF Space resources (CPU).
# Higher tiers allow more workers. Start lower (e.g., 4) for free tier.
executor = ThreadPoolExecutor(max_workers=8)

# HF Space Note: load_dotenv() is useful for local dev but HF Spaces use Secrets.
# os.getenv will automatically pick up secrets set in the HF Space settings.
load_dotenv()

# Logging setup
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# API key security
api_key_header = APIKeyHeader(name="Authorization", auto_error=False)

# --- FastAPI App Initialization ---

app = FastAPI(
    title="LokiAI API",
    description="API Proxy for various AI models with usage tracking and streaming.",
    version="1.0.0"
)

# Middleware
app.add_middleware(GZipMiddleware, minimum_size=1000) # Compress large responses
app.add_middleware(
    CORSMiddleware, # Allow cross-origin requests (useful for web playgrounds)
    allow_origins=["*"], # Or restrict to specific origins
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# --- Environment Variables & Model Config ---

@lru_cache(maxsize=1) # Cache environment variables
def get_env_vars() -> Dict[str, Any]:
    """Loads and returns essential environment variables."""
    # HF Space Note: Set these as Secrets in your Hugging Face Space settings.
    return {
        'api_keys': set(filter(None, os.getenv('API_KEYS', '').split(','))), # Use set for faster lookup
        'secret_api_endpoint': os.getenv('SECRET_API_ENDPOINT'),
        'secret_api_endpoint_2': os.getenv('SECRET_API_ENDPOINT_2'),
        'secret_api_endpoint_3': os.getenv('SECRET_API_ENDPOINT_3'), # Search endpoint
        'secret_api_endpoint_4': os.getenv('SECRET_API_ENDPOINT_4', "https://text.pollinations.ai/openai"), # Pollinations
        'secret_api_endpoint_5': os.getenv('SECRET_API_ENDPOINT_5'), # Claude 3 endpoint
        'mistral_api': os.getenv('MISTRAL_API', "https://api.mistral.ai"),
        'mistral_key': os.getenv('MISTRAL_KEY'),
        'new_img_endpoint': os.getenv('NEW_IMG'), # Image generation endpoint
        'hf_space_url': os.getenv('HF_SPACE_URL', 'https://your-space-name.hf.space') # HF Space Note: Set this! Used for Referer/Origin checks.
    }

# Model sets for fast lookups
# HF Space Note: Consider moving these large sets to a separate config file (e.g., config.py or models_config.json)
# for better organization if they grow larger.
mistral_models: Set[str] = {
    "mistral-large-latest", "pixtral-large-latest", "mistral-moderation-latest",
    "ministral-3b-latest", "ministral-8b-latest", "open-mistral-nemo",
    "mistral-small-latest", "mistral-saba-latest", "codestral-latest"
}

pollinations_models: Set[str] = {
    "openai", "openai-large", "openai-xlarge", "openai-reasoning", "qwen-coder",
    "llama", "mistral", "searchgpt", "deepseek", "claude-hybridspace",
    "deepseek-r1", "deepseek-reasoner", "llamalight", "gemini", "gemini-thinking",
    "hormoz", "phi", "phi-mini", "openai-audio", "llama-scaleway"
}

alternate_models: Set[str] = {
    "gpt-4o", "deepseek-v3", "llama-3.1-8b-instruct", "llama-3.1-sonar-small-128k-online",
    "deepseek-r1-uncensored", "tinyswallow1.5b", "andy-3.5", "o3-mini-low",
    "hermes-3-llama-3.2-3b", "creitin-r1", "fluffy.1-chat", "plutotext-1-text",
    "command-a", "claude-3-7-sonnet-20250219", "plutogpt-3.5-turbo"
}

claude_3_models: Set[str] = {
    "claude-3-7-sonnet", "claude-3-7-sonnet-thinking", "claude 3.5 haiku",
    "claude 3.5 sonnet", "claude 3.5 haiku", "o3-mini-medium", "o3-mini-high",
    "grok-3", "grok-3-thinking", "grok 2"
}

supported_image_models: Set[str] = {
    "Flux Pro Ultra", "grok-2-aurora", "Flux Pro", "Flux Pro Ultra Raw", "Flux Dev",
    "Flux Schnell", "stable-diffusion-3-large-turbo", "Flux Realism",
    "stable-diffusion-ultra", "dall-e-3", "sdxl-lightning-4step"
}

# --- Pydantic Models ---

class Message(BaseModel):
    role: str
    content: Any # Allow content to be string or potentially list for multimodal models

class Payload(BaseModel):
    model: str
    messages: List[Message]
    stream: bool = False
    # Add other potential OpenAI compatible parameters with defaults
    max_tokens: Optional[int] = None
    temperature: Optional[float] = None
    top_p: Optional[float] = None
    # ... add others as needed

class ImageGenerationPayload(BaseModel):
    model: str
    prompt: str
    size: Optional[str] = "1024x1024" # Default size, make optional if API allows
    n: Optional[int] = 1 # Number of images, OpenAI uses 'n'
    # HF Space Note: Ensure these parameter names match the target NEW_IMG endpoint API
    # Renaming from 'number' to 'n' and 'size' type hint correction.

# --- Global State & Clients ---

server_status: bool = True # For maintenance mode
available_model_ids: List[str] = [] # Loaded at startup

# HF Space Note: Reusable HTTP client with connection pooling is crucial for performance.
# Adjust limits based on expected load and HF Space resources.
@lru_cache(maxsize=1)
def get_async_client() -> httpx.AsyncClient:
    """Returns a cached instance of httpx.AsyncClient."""
    # HF Space Note: Timeouts are important to prevent hanging requests.
    # Keepalive connections reduce handshake overhead.
    timeout = httpx.Timeout(30.0, connect=10.0) # 30s total, 10s connect
    limits = httpx.Limits(max_keepalive_connections=20, max_connections=100)
    return httpx.AsyncClient(timeout=timeout, limits=limits, follow_redirects=True)

# HF Space Note: cloudscraper pool. Be mindful of potential rate limits or blocks.
# Consider alternatives if this becomes unreliable.
scraper_pool: List[cloudscraper.CloudScraper] = []
MAX_SCRAPERS = 10 # Reduced pool size for potentially lower resource usage

def get_scraper() -> cloudscraper.CloudScraper:
    """Gets a cloudscraper instance from the pool."""
    if not scraper_pool:
        logger.info(f"Initializing {MAX_SCRAPERS} cloudscraper instances...")
        for _ in range(MAX_SCRAPERS):
            # HF Space Note: Scraper creation can be slow, doing it upfront is good.
            scraper_pool.append(cloudscraper.create_scraper())
        logger.info("Cloudscraper pool initialized.")
    # Simple round-robin selection
    return scraper_pool[int(time.monotonic() * 1000) % MAX_SCRAPERS]

# --- Security & Authentication ---

async def verify_api_key(
    request: Request,
    api_key: Optional[str] = Security(api_key_header)
) -> bool:
    """Verifies the provided API key against environment variables."""
    env_vars = get_env_vars()
    valid_api_keys = env_vars.get('api_keys', set())
    hf_space_url = env_vars.get('hf_space_url', '')

    # Allow bypass if the referer is from the known HF Space playground URLs
    # HF Space Note: Make HF_SPACE_URL a secret for flexibility.
    referer = request.headers.get("referer", "")
    if hf_space_url and referer.startswith((f"{hf_space_url}/playground", f"{hf_space_url}/image-playground")):
        logger.debug(f"API Key check bypassed for referer: {referer}")
        return True

    if not api_key:
        logger.warning("API Key missing.")
        raise HTTPException(status_code=403, detail="Not authenticated: No API key provided")

    # Clean 'Bearer ' prefix if present
    if api_key.startswith('Bearer '):
        api_key = api_key[7:]

    if not valid_api_keys:
        logger.error("API keys are not configured on the server (API_KEYS secret missing?).")
        raise HTTPException(status_code=500, detail="Server configuration error: API keys not set")

    if api_key not in valid_api_keys:
        logger.warning(f"Invalid API key received: {api_key[:4]}...") # Log prefix only
        raise HTTPException(status_code=403, detail="Not authenticated: Invalid API key")

    logger.debug("API Key verified successfully.")
    return True

# --- Model & File Loading ---

@lru_cache(maxsize=1)
def load_models_data() -> List[Dict]:
    """Loads model data from models.json."""
    # HF Space Note: Ensure models.json is in the root of your HF Space repo.
    models_file = Path(__file__).parent / 'models.json'
    if not models_file.is_file():
        logger.error("models.json not found!")
        return []
    try:
        with open(models_file, 'r') as f:
            return json.load(f)
    except (FileNotFoundError, json.JSONDecodeError) as e:
        logger.error(f"Error loading models.json: {e}")
        return []

async def get_models() -> List[Dict]:
    """Async wrapper to get models data."""
    models_data = load_models_data()
    if not models_data:
        raise HTTPException(status_code=500, detail="Error loading available models")
    return models_data

# --- Static File Serving ---

# HF Space Note: Cache frequently accessed static files in memory.
@lru_cache(maxsize=10)
def read_static_file(file_path: str) -> Optional[str]:
    """Reads a static file, caching the result."""
    full_path = Path(__file__).parent / file_path
    if not full_path.is_file():
        logger.warning(f"Static file not found: {file_path}")
        return None
    try:
        with open(full_path, "r", encoding="utf-8") as file:
            return file.read()
    except Exception as e:
        logger.error(f"Error reading static file {file_path}: {e}")
        return None

async def serve_static_html(file_path: str) -> HTMLResponse:
    """Serves a static HTML file."""
    content = read_static_file(file_path)
    if content is None:
        return HTMLResponse(content=f"<h1>Error: {file_path} not found</h1>", status_code=404)
    return HTMLResponse(content=content)

# --- API Endpoints ---

# Basic Routes & Static Files
@app.get("/favicon.ico", include_in_schema=False)
async def favicon():
    favicon_path = Path(__file__).parent / "favicon.ico"
    if favicon_path.is_file():
        return FileResponse(favicon_path, media_type="image/vnd.microsoft.icon")
    raise HTTPException(status_code=404, detail="favicon.ico not found")

@app.get("/banner.jpg", include_in_schema=False)
async def banner():
    banner_path = Path(__file__).parent / "banner.jpg"
    if banner_path.is_file():
        return FileResponse(banner_path, media_type="image/jpeg") # Assuming JPEG
    raise HTTPException(status_code=404, detail="banner.jpg not found")

@app.get("/ping", tags=["Utility"])
async def ping():
    """Simple health check endpoint."""
    return {"message": "pong"}

@app.get("/", response_class=HTMLResponse, tags=["Frontend"])
async def root():
    """Serves the main index HTML page."""
    return await serve_static_html("index.html")

@app.get("/script.js", response_class=Response, tags=["Frontend"], include_in_schema=False)
async def script_js():
    content = read_static_file("script.js")
    if content is None:
        return Response(content="/* script.js not found */", status_code=404, media_type="application/javascript")
    return Response(content=content, media_type="application/javascript")

@app.get("/style.css", response_class=Response, tags=["Frontend"], include_in_schema=False)
async def style_css():
    content = read_static_file("style.css")
    if content is None:
        return Response(content="/* style.css not found */", status_code=404, media_type="text/css")
    return Response(content=content, media_type="text/css")

@app.get("/playground", response_class=HTMLResponse, tags=["Frontend"])
async def playground():
    """Serves the chat playground HTML page."""
    return await serve_static_html("playground.html")

@app.get("/image-playground", response_class=HTMLResponse, tags=["Frontend"])
async def image_playground():
    """Serves the image playground HTML page."""
    return await serve_static_html("image-playground.html")

# Dynamic Page Example
@app.get("/dynamo", response_class=HTMLResponse, tags=["Examples"])
async def dynamic_ai_page(request: Request):
    """Generates a dynamic HTML page using an AI model (example)."""
    # HF Space Note: This uses a hardcoded URL to *itself* if running in the space.
    # Ensure the HF_SPACE_URL secret is set correctly.
    env_vars = get_env_vars()
    hf_space_url = env_vars.get('hf_space_url', '')
    if not hf_space_url:
        raise HTTPException(status_code=500, detail="HF_SPACE_URL environment variable not set.")

    user_agent = request.headers.get('user-agent', 'Unknown')
    client_ip = request.client.host if request.client else "Unknown"
    location = f"IP: {client_ip}" # Basic IP, location requires GeoIP lookup (extra dependency)

    prompt = f"""
    Generate a cool, dynamic HTML page for a user with the following details:
    - App Name: "LokiAI"
    - User-Agent: {user_agent}
    - Location Info: {location}
    - Style: Cyberpunk aesthetic, minimalist layout, maybe some retro touches.
    - Content: Include a heading, a short motivational or witty message, and perhaps a subtle animation. Use inline CSS for styling within a <style> tag.
    - Output: Provide ONLY the raw HTML code, starting with <!DOCTYPE html>. Do not wrap it in backticks or add explanations.
    """

    payload = {
        "model": "mistral-small-latest", # Or another capable model
        "messages": [{"role": "user", "content": prompt}],
        "max_tokens": 1000,
        "temperature": 0.7
    }
    headers = {
        # HF Space Note: Use the space's own URL and a valid API key if required by your setup.
        # Here, we assume the playground key bypass works or use a dedicated internal key.
        "Authorization": f"Bearer {list(env_vars['api_keys'])[0] if env_vars['api_keys'] else 'dummy-key'}" # Use first key or dummy
    }

    try:
        # HF Space Note: Use the async client for internal requests too.
        client = get_async_client()
        api_url = f"{hf_space_url}/chat/completions" # Call own endpoint
        response = await client.post(api_url, json=payload, headers=headers)
        response.raise_for_status() # Raise exception for bad status codes
        data = response.json()

        html_content = data.get('choices', [{}])[0].get('message', {}).get('content', '')

        # Basic cleanup (remove potential markdown backticks if model adds them)
        html_content = re.sub(r"^```html\s*", "", html_content, flags=re.IGNORECASE)
        html_content = re.sub(r"\s*```$", "", html_content)

        if not html_content.strip().lower().startswith("<!doctype html"):
             logger.warning("Dynamo page generation might be incomplete or malformed.")
             # Optionally return a fallback static page here

        return HTMLResponse(content=html_content)

    except httpx.HTTPStatusError as e:
        logger.error(f"Error calling self API for /dynamo: {e.response.status_code} - {e.response.text}")
        raise HTTPException(status_code=502, detail=f"Failed to generate dynamic content: Upstream API error {e.response.status_code}")
    except Exception as e:
        logger.error(f"Unexpected error in /dynamo: {e}", exc_info=True)
        raise HTTPException(status_code=500, detail="Failed to generate dynamic content due to an internal error.")


# Vetra Example (Fetching from GitHub)
# HF Space Note: Ensure outbound requests to raw.githubusercontent.com are allowed.
GITHUB_BASE = "https://raw.githubusercontent.com/Parthsadaria/Vetra/main"
VETRA_FILES = {"html": "index.html", "css": "style.css", "js": "script.js"}

async def get_github_file(filename: str) -> Optional[str]:
    """Fetches a file from the Vetra GitHub repo."""
    url = f"{GITHUB_BASE}/{filename}"
    try:
        client = get_async_client()
        res = await client.get(url)
        res.raise_for_status()
        return res.text
    except httpx.RequestError as e:
        logger.error(f"Error fetching GitHub file {url}: {e}")
        return None
    except httpx.HTTPStatusError as e:
        logger.error(f"GitHub file {url} returned status {e.response.status_code}")
        return None

@app.get("/vetra", response_class=HTMLResponse, tags=["Examples"])
async def serve_vetra():
    """Serves the Vetra application by fetching components from GitHub."""
    logger.info("Fetching Vetra files from GitHub...")
    # Fetch files concurrently
    html_task = asyncio.create_task(get_github_file(VETRA_FILES["html"]))
    css_task = asyncio.create_task(get_github_file(VETRA_FILES["css"]))
    js_task = asyncio.create_task(get_github_file(VETRA_FILES["js"]))

    html, css, js = await asyncio.gather(html_task, css_task, js_task)

    if not html:
        logger.error("Failed to fetch Vetra index.html")
        return HTMLResponse(content="<h1>Error: Could not load Vetra application (HTML missing)</h1>", status_code=502)

    # Inject CSS and JS into HTML
    css_content = f"<style>{css or '/* CSS failed to load */'}</style>"
    js_content = f"<script>{js or '// JS failed to load'}</script>"

    # Inject carefully before closing tags
    final_html = html.replace("</head>", f"{css_content}\n</head>", 1)
    final_html = final_html.replace("</body>", f"{js_content}\n</body>", 1)

    logger.info("Successfully served Vetra application.")
    return HTMLResponse(content=final_html)


# Model Info Endpoint
@app.get("/api/v1/models", tags=["Models"])
@app.get("/models", tags=["Models"])
async def return_models():
    """Returns the list of available models loaded from models.json."""
    # HF Space Note: This endpoint now relies on models.json being present.
    # It no longer dynamically adds models defined only in the script's sets.
    # Ensure models.json is comprehensive or adjust startup logic if needed.
    return await get_models()

# Search Endpoint (using cloudscraper)
# HF Space Note: This uses cloudscraper which might be blocked or require updates.
# Consider replacing with a more stable search API if possible.
async def generate_search_async(query: str, systemprompt: Optional[str] = None) -> asyncio.Queue:
    """Performs search using the configured backend and streams results."""
    queue = asyncio.Queue()
    env_vars = get_env_vars()
    search_endpoint = env_vars.get('secret_api_endpoint_3')

    async def _fetch_search_data():
        if not search_endpoint:
            await queue.put({"error": "Search API endpoint (SECRET_API_ENDPOINT_3) not configured"})
            await queue.put(None) # Signal end
            return

        try:
            scraper = get_scraper() # Get a scraper instance from the pool
            loop = asyncio.get_running_loop()

            system_message = systemprompt or "You are a helpful search assistant."
            messages = [
                {"role": "system", "content": system_message},
                {"role": "user", "content": query},
            ]
            payload = {
                "model": "searchgpt", # Assuming the endpoint expects this model name
                "messages": messages,
                "stream": True # Explicitly request streaming from backend
            }
            headers = {"User-Agent": "Mozilla/5.0"} # Standard user agent

            # HF Space Note: Run synchronous scraper call in executor thread
            response = await loop.run_in_executor(
                executor,
                scraper.post,
                search_endpoint,
                json=payload,
                headers=headers,
                stream=True # Request streaming from requests library perspective
            )

            response.raise_for_status()

            # Process SSE stream
            # HF Space Note: Iterating lines on the response directly can be blocking if not handled carefully.
            # Using iter_lines with decode_unicode=True is generally safe.
            for line in response.iter_lines(decode_unicode=True):
                if line.startswith("data: "):
                    try:
                        data_str = line[6:]
                        if data_str.strip() == "[DONE]": # Check for OpenAI style completion
                            break
                        json_data = json.loads(data_str)
                        # Assuming OpenAI compatible streaming format
                        delta = json_data.get("choices", [{}])[0].get("delta", {})
                        content = delta.get("content")
                        if content:
                             # Reconstruct OpenAI-like SSE chunk
                            chunk = {
                                "id": json_data.get("id"),
                                "object": "chat.completion.chunk",
                                "created": json_data.get("created", int(time.time())),
                                "model": "searchgpt",
                                "choices": [{"index": 0, "delta": {"content": content}, "finish_reason": None}]
                            }
                            await queue.put({"data": f"data: {json.dumps(chunk)}\n\n", "text": content})
                        # Check for finish reason
                        finish_reason = json_data.get("choices", [{}])[0].get("finish_reason")
                        if finish_reason:
                             chunk = {
                                "id": json_data.get("id"),
                                "object": "chat.completion.chunk",
                                "created": json_data.get("created", int(time.time())),
                                "model": "searchgpt",
                                "choices": [{"index": 0, "delta": {}, "finish_reason": finish_reason}]
                            }
                             await queue.put({"data": f"data: {json.dumps(chunk)}\n\n", "text": ""})
                             break # Stop processing after finish reason

                    except json.JSONDecodeError:
                        logger.warning(f"Failed to decode JSON from search stream: {line}")
                        continue
                    except Exception as e:
                        logger.error(f"Error processing search stream chunk: {e}", exc_info=True)
                        await queue.put({"error": f"Error processing stream: {e}"})
                        break # Stop on processing error

        except requests.exceptions.RequestException as e:
            logger.error(f"Search request failed: {e}")
            await queue.put({"error": f"Search request failed: {e}"})
        except Exception as e:
            logger.error(f"Unexpected error during search: {e}", exc_info=True)
            await queue.put({"error": f"An unexpected error occurred during search: {e}"})
        finally:
            await queue.put(None) # Signal completion


    asyncio.create_task(_fetch_search_data())
    return queue

@app.get("/searchgpt", tags=["Search"])
async def search_gpt(q: str, stream: bool = True, systemprompt: Optional[str] = None):
    """
    Performs a search using the backend search model and streams results.
    Pass `stream=false` to get the full response at once.
    """
    if not q:
        raise HTTPException(status_code=400, detail="Query parameter 'q' is required")

    # HF Space Note: Ensure usage_tracker is thread-safe if used across async/sync boundaries.
    # The dummy tracker used when the module isn't found is safe.
    usage_tracker.record_request(endpoint="/searchgpt")

    queue = await generate_search_async(q, systemprompt=systemprompt)

    if stream:
        async def stream_generator():
            full_response_text = "" # Keep track for non-streaming case if needed
            while True:
                item = await queue.get()
                if item is None: # End of stream signal
                    break
                if "error" in item:
                    # HF Space Note: Log errors server-side, return generic error to client for security.
                    logger.error(f"Search stream error: {item['error']}")
                    # Send an error event in the stream
                    error_event = {"error": {"message": "Search failed.", "code": 500}}
                    yield f"data: {json.dumps(error_event)}\n\n"
                    break
                if "data" in item:
                    yield item["data"]
                    full_response_text += item.get("text", "")
            # Optionally yield a [DONE] message if backend doesn't guarantee it
            # yield "data: [DONE]\n\n"

        return StreamingResponse(
            stream_generator(),
            media_type="text/event-stream",
            headers={
                "Content-Type": "text/event-stream",
                "Cache-Control": "no-cache",
                "Connection": "keep-alive",
                "X-Accel-Buffering": "no" # Crucial for Nginx/proxies in HF Spaces
            }
        )
    else:
        # Collect full response for non-streaming request
        full_response_text = ""
        while True:
            item = await queue.get()
            if item is None:
                break
            if "error" in item:
                logger.error(f"Search non-stream error: {item['error']}")
                raise HTTPException(status_code=502, detail=f"Search failed: {item['error']}")
            full_response_text += item.get("text", "")

        # Mimic OpenAI non-streaming response structure
        return JSONResponse(content={
            "id": f"search-{int(time.time())}",
            "object": "chat.completion",
            "created": int(time.time()),
            "model": "searchgpt",
            "choices": [{
                "index": 0,
                "message": {
                    "role": "assistant",
                    "content": full_response_text,
                },
                "finish_reason": "stop",
            }],
            "usage": { # Note: Token usage is unknown here
                "prompt_tokens": None,
                "completion_tokens": None,
                "total_tokens": None,
            }
        })


# Main Chat Completions Proxy
@app.post("/api/v1/chat/completions", tags=["Chat Completions"])
@app.post("/chat/completions", tags=["Chat Completions"])
async def get_completion(
    payload: Payload,
    request: Request,
    authenticated: bool = Depends(verify_api_key) # Apply authentication
):
    """
    Proxies chat completion requests to the appropriate backend API based on the model.
    Supports streaming (SSE).
    """
    if not server_status:
        raise HTTPException(status_code=503, detail="Server is under maintenance.")

    model_to_use = payload.model or "gpt-4o-mini" # Default model

    # HF Space Note: Check against models loaded at startup.
    if available_model_ids and model_to_use not in available_model_ids:
        logger.warning(f"Requested model '{model_to_use}' not in available list.")
        # Check if it's a known category even if not explicitly in models.json
        known_categories = mistral_models | pollinations_models | alternate_models | claude_3_models
        if model_to_use not in known_categories:
             raise HTTPException(
                status_code=400,
                detail=f"Model '{model_to_use}' is not available or recognized. Check /models."
            )
        else:
            logger.info(f"Allowing known category model '{model_to_use}' despite not being in models.json.")


    # Log request asynchronously
    asyncio.create_task(log_request(request, model_to_use))
    usage_tracker.record_request(model=model_to_use, endpoint="/chat/completions")

    # Prepare payload for the target API
    payload_dict = payload.dict(exclude_none=True) # Exclude None values
    payload_dict["model"] = model_to_use # Ensure model is set

    env_vars = get_env_vars()
    hf_space_url = env_vars.get('hf_space_url', '') # Needed for Referer/Origin

    # Determine target endpoint and headers
    endpoint = None
    custom_headers = {}

    if model_to_use in mistral_models:
        endpoint = env_vars.get('mistral_api')
        api_key = env_vars.get('mistral_key')
        if not endpoint or not api_key:
            raise HTTPException(status_code=500, detail="Mistral API endpoint or key not configured.")
        custom_headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json", "Accept": "application/json"}
        # Mistral specific adjustments if needed
        # payload_dict.pop('system', None) # Example: if Mistral doesn't use 'system' role

    elif model_to_use in pollinations_models:
        endpoint = env_vars.get('secret_api_endpoint_4')
        if not endpoint:
             raise HTTPException(status_code=500, detail="Pollinations API endpoint (SECRET_API_ENDPOINT_4) not configured.")
        # Pollinations might need specific headers? Add them here.
        custom_headers = {"Content-Type": "application/json"}

    elif model_to_use in alternate_models:
        endpoint = env_vars.get('secret_api_endpoint_2')
        if not endpoint:
             raise HTTPException(status_code=500, detail="Alternate API endpoint (SECRET_API_ENDPOINT_2) not configured.")
        custom_headers = {"Content-Type": "application/json"}

    elif model_to_use in claude_3_models:
        endpoint = env_vars.get('secret_api_endpoint_5')
        if not endpoint:
             raise HTTPException(status_code=500, detail="Claude 3 API endpoint (SECRET_API_ENDPOINT_5) not configured.")
        custom_headers = {"Content-Type": "application/json"}
        # Claude specific headers (like anthropic-version) might be needed
        # custom_headers["anthropic-version"] = "2023-06-01"

    else: # Default endpoint
        endpoint = env_vars.get('secret_api_endpoint')
        if not endpoint:
             raise HTTPException(status_code=500, detail="Default API endpoint (SECRET_API_ENDPOINT) not configured.")
        # Default endpoint might need Origin/Referer
        if hf_space_url:
            custom_headers = {
                "Origin": hf_space_url,
                "Referer": hf_space_url,
                "Content-Type": "application/json"
            }
        else:
             custom_headers = {"Content-Type": "application/json"}


    target_url = f"{endpoint.rstrip('/')}/v1/chat/completions" # Assume OpenAI compatible path
    logger.info(f"Proxying request for model '{model_to_use}' to endpoint: {endpoint}")

    client = get_async_client()

    async def stream_generator():
        """Generator for streaming the response."""
        nonlocal target_url # Allow modification if needed
        try:
            async with client.stream("POST", target_url, json=payload_dict, headers=custom_headers) as response:
                # Check for initial errors before streaming
                if response.status_code >= 400:
                     error_body = await response.aread()
                     logger.error(f"Upstream API error: {response.status_code} - {error_body.decode()}")
                     # Try to parse error detail from upstream
                     detail = f"Upstream API error: {response.status_code}"
                     try:
                         error_json = json.loads(error_body)
                         detail = error_json.get('error', {}).get('message', detail)
                     except json.JSONDecodeError:
                         pass
                     # Send error as SSE event
                     error_event = {"error": {"message": detail, "code": response.status_code}}
                     yield f"data: {json.dumps(error_event)}\n\n"
                     return # Stop generation

                # Stream the response line by line
                async for line in response.aiter_lines():
                    if line:
                        # Pass through the data directly
                        yield line + "\n"
                # Ensure stream is properly closed, yield [DONE] if backend doesn't
                # Some backends might not send [DONE], uncomment if needed
                # yield "data: [DONE]\n\n"

        except httpx.TimeoutException:
            logger.error(f"Request to {target_url} timed out.")
            error_event = {"error": {"message": "Request timed out", "code": 504}}
            yield f"data: {json.dumps(error_event)}\n\n"
        except httpx.RequestError as e:
            logger.error(f"Failed to connect to upstream API {target_url}: {e}")
            error_event = {"error": {"message": f"Upstream connection error: {e}", "code": 502}}
            yield f"data: {json.dumps(error_event)}\n\n"
        except Exception as e:
            logger.error(f"An unexpected error occurred during streaming proxy: {e}", exc_info=True)
            error_event = {"error": {"message": f"Internal server error: {e}", "code": 500}}
            yield f"data: {json.dumps(error_event)}\n\n"

    if payload.stream:
        return StreamingResponse(
            stream_generator(),
            media_type="text/event-stream",
            headers={
                "Content-Type": "text/event-stream",
                "Cache-Control": "no-cache",
                "Connection": "keep-alive",
                "X-Accel-Buffering": "no" # Essential for HF Spaces proxying SSE
            }
        )
    else:
        # Handle non-streaming request by collecting the streamed chunks
        full_response_content = ""
        final_json_response = None
        async for line in stream_generator():
            if line.startswith("data: "):
                data_str = line[6:].strip()
                if data_str == "[DONE]":
                    break
                try:
                    chunk = json.loads(data_str)
                    # Check for error chunk
                    if "error" in chunk:
                        logger.error(f"Received error during non-stream collection: {chunk['error']}")
                        raise HTTPException(status_code=chunk['error'].get('code', 502), detail=chunk['error'].get('message', 'Upstream API error'))

                    # Accumulate content from delta
                    delta = chunk.get("choices", [{}])[0].get("delta", {})
                    content = delta.get("content")
                    if content:
                        full_response_content += content

                    # Store the last chunk structure to reconstruct the final response
                    # We assume the last chunk contains necessary info like id, model, etc.
                    # but we overwrite the choices/message part.
                    final_json_response = chunk # Keep the structure
                    # Check for finish reason
                    finish_reason = chunk.get("choices", [{}])[0].get("finish_reason")
                    if finish_reason:
                        break # Stop collecting

                except json.JSONDecodeError:
                    logger.warning(f"Could not decode JSON chunk in non-stream mode: {data_str}")
                except Exception as e:
                     logger.error(f"Error processing chunk in non-stream mode: {e}")
                     raise HTTPException(status_code=500, detail="Error processing response stream.")

        if final_json_response is None:
             # Handle cases where no valid data chunks were received
             logger.error("No valid response chunks received for non-streaming request.")
             raise HTTPException(status_code=502, detail="Failed to get valid response from upstream API.")


        # Reconstruct OpenAI-like non-streaming response
        final_response_obj = {
            "id": final_json_response.get("id", f"chatcmpl-{int(time.time())}"),
            "object": "chat.completion",
            "created": final_json_response.get("created", int(time.time())),
            "model": model_to_use, # Use the requested model
            "choices": [{
                "index": 0,
                "message": {
                    "role": "assistant",
                    "content": full_response_content,
                },
                "finish_reason": final_json_response.get("choices", [{}])[0].get("finish_reason", "stop"), # Get finish reason from last chunk
            }],
            "usage": { # Token usage might be in the last chunk for some APIs, otherwise unknown
                "prompt_tokens": None,
                "completion_tokens": None,
                "total_tokens": None,
            }
        }
        # Attempt to extract usage if present in the (potentially non-standard) final chunk
        usage_data = final_json_response.get("usage")
        if isinstance(usage_data, dict):
            final_response_obj["usage"].update(usage_data)


        return JSONResponse(content=final_response_obj)


# Image Generation Endpoint
@app.post("/images/generations", tags=["Image Generation"])
async def create_image(
    payload: ImageGenerationPayload,
    authenticated: bool = Depends(verify_api_key)
):
    """
    Generates images based on a text prompt using the configured backend.
    """
    if not server_status:
        raise HTTPException(status_code=503, detail="Server is under maintenance.")

    if payload.model not in supported_image_models:
        raise HTTPException(
            status_code=400,
            detail=f"Model '{payload.model}' is not supported for image generation. Supported: {', '.join(supported_image_models)}"
        )

    usage_tracker.record_request(model=payload.model, endpoint="/images/generations")

    env_vars = get_env_vars()
    target_api_url = env_vars.get('new_img_endpoint')
    if not target_api_url:
        raise HTTPException(status_code=500, detail="Image generation endpoint (NEW_IMG) not configured.")

    # Prepare payload for the target API (adjust keys if needed)
    # HF Space Note: Ensure the keys match the actual API expected by NEW_IMG endpoint.
    # Assuming it's OpenAI compatible here.
    api_payload = {
        "model": payload.model,
        "prompt": payload.prompt,
        "n": payload.n,
        "size": payload.size
    }
    # Remove None values the target API might not like
    api_payload = {k: v for k, v in api_payload.items() if v is not None}


    logger.info(f"Requesting image generation for model '{payload.model}' from {target_api_url}")
    client = get_async_client()

    try:
        # HF Space Note: Image generation can take time, use a longer timeout if needed.
        # Consider making this truly async if the backend supports webhooks or polling.
        response = await client.post(target_api_url, json=api_payload, timeout=120.0) # 2 min timeout
        response.raise_for_status() # Raise HTTP errors

        # Return the exact response from the backend
        return JSONResponse(content=response.json())

    except httpx.TimeoutException:
        logger.error(f"Image generation request to {target_api_url} timed out.")
        raise HTTPException(status_code=504, detail="Image generation request timed out.")
    except httpx.HTTPStatusError as e:
        logger.error(f"Image generation API error: {e.response.status_code} - {e.response.text}")
        detail = f"Image generation failed: Upstream API error {e.response.status_code}"
        try:
             err_json = e.response.json()
             detail = err_json.get('error', {}).get('message', detail)
        except json.JSONDecodeError:
             pass
        raise HTTPException(status_code=e.response.status_code, detail=detail)
    except httpx.RequestError as e:
        logger.error(f"Error connecting to image generation service {target_api_url}: {e}")
        raise HTTPException(status_code=502, detail=f"Error connecting to image generation service: {e}")
    except Exception as e:
        logger.error(f"Unexpected error during image generation: {e}", exc_info=True)
        raise HTTPException(status_code=500, detail=f"An unexpected error occurred during image generation: {e}")


# --- Utility & Admin Endpoints ---

async def log_request(request: Request, model: Optional[str] = None):
    """Logs basic request information asynchronously."""
    # HF Space Note: Avoid logging sensitive info like full IP or headers unless necessary.
    # Hashing IP provides some privacy.
    client_host = request.client.host if request.client else "unknown"
    ip_hash = hash(client_host) % 10000
    timestamp = datetime.datetime.now(datetime.timezone.utc).strftime("%Y-%m-%d %H:%M:%S %Z")
    log_message = f"Timestamp: {timestamp}, IP Hash: {ip_hash}, Method: {request.method}, Path: {request.url.path}"
    if model:
        log_message += f", Model: {model}"
    logger.info(log_message)


@app.get("/usage", tags=["Admin"])
async def get_usage(days: int = 7):
    """Retrieves aggregated usage statistics."""
    # HF Space Note: Ensure usage_tracker methods are efficient, especially get_usage_summary.
    # Caching might be needed if it becomes slow.
    if days <= 0:
        raise HTTPException(status_code=400, detail="Number of days must be positive.")
    try:
        # Run potentially CPU-bound summary generation in executor
        loop = asyncio.get_running_loop()
        summary = await loop.run_in_executor(executor, usage_tracker.get_usage_summary, days)
        return summary
    except Exception as e:
        logger.error(f"Error retrieving usage statistics: {e}", exc_info=True)
        raise HTTPException(status_code=500, detail="Failed to retrieve usage statistics.")

# HF Space Note: Generating HTML dynamically can be resource-intensive.
# Consider caching the generated HTML or serving a static page updated periodically.
def generate_usage_html(usage_data: Dict) -> str:
    """Generates an HTML report from usage data."""
    # (Keep the HTML generation logic as provided in the original file)
    # ... (rest of the HTML generation code from the original file) ...
    # Ensure this function handles potentially missing keys gracefully
    models_usage = usage_data.get('models', {})
    endpoints_usage = usage_data.get('api_endpoints', {})
    daily_usage = usage_data.get('recent_daily_usage', {})
    total_requests = usage_data.get('total_requests', 0)

    model_usage_rows = "\n".join([
        f"""
        <tr>
            <td>{model}</td>
            <td>{model_data.get('total_requests', 'N/A')}</td>
            <td>{model_data.get('first_used', 'N/A')}</td>
            <td>{model_data.get('last_used', 'N/A')}</td>
        </tr>
        """ for model, model_data in models_usage.items()
    ]) if models_usage else "<tr><td colspan='4'>No model usage data</td></tr>"

    api_usage_rows = "\n".join([
        f"""
        <tr>
            <td>{endpoint}</td>
            <td>{endpoint_data.get('total_requests', 'N/A')}</td>
            <td>{endpoint_data.get('first_used', 'N/A')}</td>
            <td>{endpoint_data.get('last_used', 'N/A')}</td>
        </tr>
        """ for endpoint, endpoint_data in endpoints_usage.items()
    ]) if endpoints_usage else "<tr><td colspan='4'>No API endpoint usage data</td></tr>"

    daily_usage_rows = "\n".join([
        f"""
        <tr>
            <td>{date}</td>
            <td>{entity}</td>
            <td>{requests}</td>
        </tr>
        """
        for date, date_data in daily_usage.items()
        for entity, requests in date_data.items()
    ]) if daily_usage else "<tr><td colspan='3'>No daily usage data</td></tr>"


    # HF Space Note: Using f-string for large HTML is okay, but consider template engines (Jinja2)
    # for more complex pages. Ensure CSS/JS are either inline or served via separate endpoints.
    html_content = f"""
    <!DOCTYPE html>
    <html lang="en">
    <head>
        <meta charset="UTF-8">
        <meta name="viewport" content="width=device-width, initial-scale=1.0">
        <title>Lokiai AI - Usage Statistics</title>
        <link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600&display=swap" rel="stylesheet">
        <style>
            /* (Keep the CSS styles as provided in the original file) */
            :root {{
                --bg-dark: #0f1011; --bg-darker: #070708; --text-primary: #e6e6e6;
                --text-secondary: #8c8c8c; --border-color: #2c2c2c; --accent-color: #3a6ee0;
                --accent-hover: #4a7ef0;
            }}
            body {{ font-family: 'Inter', sans-serif; background-color: var(--bg-dark); color: var(--text-primary); max-width: 1200px; margin: 0 auto; padding: 40px 20px; line-height: 1.6; }}
            .logo {{ display: flex; align-items: center; justify-content: center; margin-bottom: 30px; }}
            .logo h1 {{ font-weight: 600; font-size: 2.5em; color: var(--text-primary); margin-left: 15px; }}
            .logo img {{ width: 60px; height: 60px; border-radius: 10px; }}
            .container {{ background-color: var(--bg-darker); border-radius: 12px; padding: 30px; box-shadow: 0 15px 40px rgba(0,0,0,0.3); border: 1px solid var(--border-color); }}
            h2, h3 {{ color: var(--text-primary); border-bottom: 2px solid var(--border-color); padding-bottom: 10px; font-weight: 500; }}
            .total-requests {{ background-color: var(--accent-color); color: white; text-align: center; padding: 15px; border-radius: 8px; margin-bottom: 30px; font-weight: 600; letter-spacing: -0.5px; }}
            table {{ width: 100%; border-collapse: separate; border-spacing: 0; margin-bottom: 30px; background-color: var(--bg-dark); border-radius: 8px; overflow: hidden; }}
            th, td {{ border: 1px solid var(--border-color); padding: 12px; text-align: left; transition: background-color 0.3s ease; }}
            th {{ background-color: #1e1e1e; color: var(--text-primary); font-weight: 600; text-transform: uppercase; font-size: 0.9em; }}
            tr:nth-child(even) {{ background-color: rgba(255,255,255,0.05); }}
            tr:hover {{ background-color: rgba(62,100,255,0.1); }}
            @media (max-width: 768px) {{ .container {{ padding: 15px; }} table {{ font-size: 0.9em; }} }}
        </style>
    </head>
    <body>
        <div class="container">
            <div class="logo">
                <img src="" alt="Lokai AI Logo">
                <h1>Lokiai AI Usage</h1>
            </div>

            <div class="total-requests">
                Total API Requests Recorded: {total_requests}
            </div>

            <h2>Model Usage</h2>
            <table>
                <thead><tr><th>Model</th><th>Total Requests</th><th>First Used</th><th>Last Used</th></tr></thead>
                <tbody>{model_usage_rows}</tbody>
            </table>

            <h2>API Endpoint Usage</h2>
            <table>
                <thead><tr><th>Endpoint</th><th>Total Requests</th><th>First Used</th><th>Last Used</th></tr></thead>
                <tbody>{api_usage_rows}</tbody>
            </table>

            <h2>Daily Usage (Last {usage_data.get('days_analyzed', 7)} Days)</h2>
            <table>
                 <thead><tr><th>Date</th><th>Entity (Model/Endpoint)</th><th>Requests</th></tr></thead>
                <tbody>{daily_usage_rows}</tbody>
            </table>
        </div>
    </body>
    </html>
    """
    return html_content

# HF Space Note: Caching the generated HTML page can save resources.
# Invalidate cache periodically or when usage data changes significantly.
usage_html_cache = {"content": None, "timestamp": 0}
CACHE_DURATION = 300 # Cache usage page for 5 minutes

@app.get("/usage/page", response_class=HTMLResponse, tags=["Admin"])
async def usage_page():
    """Serves an HTML page showing usage statistics."""
    now = time.monotonic()
    if usage_html_cache["content"] and (now - usage_html_cache["timestamp"] < CACHE_DURATION):
        logger.info("Serving cached usage page.")
        return HTMLResponse(content=usage_html_cache["content"])

    logger.info("Generating fresh usage page.")
    try:
        # Run potentially slow parts in executor
        loop = asyncio.get_running_loop()
        usage_data = await loop.run_in_executor(executor, usage_tracker.get_usage_summary, 7) # Get data for 7 days
        html_content = await loop.run_in_executor(executor, generate_usage_html, usage_data)

        # Update cache
        usage_html_cache["content"] = html_content
        usage_html_cache["timestamp"] = now

        return HTMLResponse(content=html_content)
    except Exception as e:
        logger.error(f"Failed to generate usage page: {e}", exc_info=True)
        # Serve stale cache if available, otherwise error
        if usage_html_cache["content"]:
            logger.warning("Serving stale usage page due to generation error.")
            return HTMLResponse(content=usage_html_cache["content"])
        else:
            raise HTTPException(status_code=500, detail="Failed to generate usage statistics page.")


# Meme Endpoint
@app.get("/meme", tags=["Fun"])
async def get_meme():
    """Fetches a random meme and streams the image."""
    # HF Space Note: Ensure meme-api.com is accessible from the HF Space network.
    client = get_async_client()
    meme_api_url = "https://meme-api.com/gimme"
    try:
        logger.info("Fetching meme info...")
        response = await client.get(meme_api_url)
        response.raise_for_status()
        response_data = response.json()

        meme_url = response_data.get("url")
        if not meme_url or not isinstance(meme_url, str):
            logger.error(f"Invalid meme URL received from API: {meme_url}")
            raise HTTPException(status_code=502, detail="Failed to get valid meme URL from API.")

        logger.info(f"Fetching meme image: {meme_url}")
        # Use streaming request for the image itself
        async with client.stream("GET", meme_url) as image_response:
            image_response.raise_for_status() # Check if image URL is valid

            # Get content type, default to image/png
            media_type = image_response.headers.get("content-type", "image/png")
            if not media_type.startswith("image/"):
                 logger.warning(f"Unexpected content type '{media_type}' for meme URL: {meme_url}")
                 # You might want to reject non-image types
                 # raise HTTPException(status_code=502, detail="Meme URL did not return an image.")


            # Stream the image content directly
            return StreamingResponse(
                image_response.aiter_bytes(),
                media_type=media_type,
                headers={'Cache-Control': 'no-cache'} # Don't cache the meme itself heavily
            )

    except httpx.HTTPStatusError as e:
         logger.error(f"HTTP error fetching meme ({e.request.url}): {e.response.status_code}")
         raise HTTPException(status_code=502, detail=f"Failed to fetch meme (HTTP {e.response.status_code})")
    except httpx.RequestError as e:
        logger.error(f"Network error fetching meme ({e.request.url}): {e}")
        raise HTTPException(status_code=502, detail="Failed to fetch meme (Network Error)")
    except Exception as e:
        logger.error(f"Unexpected error fetching meme: {e}", exc_info=True)
        raise HTTPException(status_code=500, detail="Failed to retrieve meme due to an internal error.")


# Health Check Endpoint
@app.get("/health", tags=["Utility"])
async def health_check():
    """Provides a health check status, including missing critical configurations."""
    env_vars = get_env_vars()
    missing_critical_vars = []

    # Define critical vars needed for core functionality
    critical_vars = [
        'api_keys', 'secret_api_endpoint', 'secret_api_endpoint_2',
        'secret_api_endpoint_3', 'secret_api_endpoint_4', 'secret_api_endpoint_5',
        'new_img_endpoint', 'hf_space_url'
    ]
    # Conditionally critical vars
    if any(model in mistral_models for model in available_model_ids):
        critical_vars.extend(['mistral_api', 'mistral_key'])

    for var_name in critical_vars:
        value = env_vars.get(var_name)
        # Check for None or empty strings/lists/sets
        if value is None or (isinstance(value, (str, list, set)) and not value):
            missing_critical_vars.append(var_name)

    is_healthy = not missing_critical_vars and server_status
    status_code = 200 if is_healthy else 503 # Service Unavailable if unhealthy

    health_status = {
        "status": "healthy" if is_healthy else "unhealthy",
        "server_mode": "online" if server_status else "maintenance",
        "missing_critical_env_vars": missing_critical_vars,
        "details": "All critical configurations seem okay. Ready to roll! πŸš€" if is_healthy else "Service issues detected. Check missing env vars or server status. πŸ› οΈ"
    }
    return JSONResponse(content=health_status, status_code=status_code)


# --- Startup and Shutdown Events ---

@app.on_event("startup")
async def startup_event():
    """Tasks to run when the application starts."""
    global available_model_ids
    logger.info("Application startup sequence initiated...")

    # Load models from JSON
    models_from_file = load_models_data()
    model_ids_from_file = {model['id'] for model in models_from_file if 'id' in model}

    # Combine models from file and predefined sets
    predefined_model_sets = mistral_models | pollinations_models | alternate_models | claude_3_models
    all_model_ids = model_ids_from_file.union(predefined_model_sets)
    available_model_ids = sorted(list(all_model_ids)) # Keep as sorted list

    logger.info(f"Loaded {len(model_ids_from_file)} models from models.json.")
    logger.info(f"Total {len(available_model_ids)} unique models available.")

    # Initialize scraper pool (can take time)
    # HF Space Note: Run potentially blocking I/O in executor during startup
    loop = asyncio.get_running_loop()
    await loop.run_in_executor(executor, get_scraper) # This initializes the pool

    # Validate critical environment variables and log warnings
    env_vars = get_env_vars()
    logger.info("Checking critical environment variables (Secrets)...")
    await health_check() # Run health check logic to log warnings

    # Pre-connect async client? Optional, httpx handles connections on demand.
    # client = get_async_client()
    # await client.get("https://www.google.com") # Example warm-up call

    logger.info("Startup complete. Server is ready to accept requests.")


@app.on_event("shutdown")
async def shutdown_event():
    """Tasks to run when the application shuts down."""
    logger.info("Application shutdown sequence initiated...")

    # Close the httpx client gracefully
    client = get_async_client()
    await client.aclose()
    logger.info("HTTP client closed.")

    # Shutdown the thread pool executor
    executor.shutdown(wait=True)
    logger.info("Thread pool executor shut down.")

    # Clear scraper pool (optional, resources will be reclaimed anyway)
    scraper_pool.clear()
    logger.info("Scraper pool cleared.")

    # Persist usage data
    # HF Space Note: Ensure file system is writable if saving locally.
    # Consider using HF Datasets or external DB for persistent storage.
    try:
        logger.info("Saving usage data...")
        usage_tracker.save_data()
        logger.info("Usage data saved.")
    except Exception as e:
        logger.error(f"Failed to save usage data during shutdown: {e}")

    logger.info("Shutdown complete.")


# --- Main Execution Block ---
# HF Space Note: This block is mainly for local testing.
# HF Spaces usually run the app using `uvicorn main:app --host 0.0.0.0 --port 7860` (or similar)
# defined in the README metadata or a Procfile.
if __name__ == "__main__":
    import uvicorn
    logger.info("Starting server locally with uvicorn...")
    # HF Space Note: Port 7860 is the default for HF Spaces. Host 0.0.0.0 is required.
    uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")