Spaces:
Running
Running
File size: 57,150 Bytes
4986fe4 f97c315 925b0de f97c315 925b0de f97c315 925b0de dc21031 925b0de a06f1b3 925b0de ab07513 f97c315 925b0de f97c315 925b0de f97c315 925b0de 378f2c3 925b0de 16f4d5b c3d5a54 ab07513 925b0de ab07513 925b0de f97c315 925b0de 1f0a039 925b0de f97c315 925b0de f97c315 925b0de 1f0a039 925b0de 1f0a039 925b0de ab07513 925b0de 396b35b 925b0de f97c315 925b0de 396b35b 925b0de f97c315 925b0de f97c315 925b0de 1f0a039 396b35b 925b0de 396b35b 925b0de 396b35b 1f0a039 396b35b a01be99 925b0de f97c315 0a0ab04 925b0de 1f0a039 925b0de 1f0a039 925b0de ab07513 925b0de f97c315 925b0de ab07513 925b0de ab07513 925b0de 396b35b 925b0de ab07513 925b0de ab07513 925b0de c30ac5e 925b0de ceb203a 925b0de ceb203a 925b0de f97c315 925b0de f97c315 925b0de 1f0a039 ab07513 925b0de ea75284 f97c315 925b0de ea75284 925b0de ea75284 c20175b 925b0de c20175b 925b0de f97c315 925b0de c20175b 925b0de c20175b 925b0de f97c315 925b0de f97c315 925b0de f97c315 925b0de f97c315 ea75284 925b0de 9949594 925b0de c30ac5e 925b0de 9b57c30 6a84e5c 925b0de 3b8f2de f97c315 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 |
import os
import re
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException, Request, Depends, Security, Query
from fastapi.responses import StreamingResponse, HTMLResponse, JSONResponse, FileResponse, PlainTextResponse
from fastapi.security import APIKeyHeader
from pydantic import BaseModel
import httpx
from functools import lru_cache
from pathlib import Path
import json
import datetime
import time
import threading
from typing import Optional, Dict, List, Any, Generator
import asyncio
from starlette.status import HTTP_403_FORBIDDEN
import cloudscraper
from concurrent.futures import ThreadPoolExecutor
import uvloop
from fastapi.middleware.gzip import GZipMiddleware
from starlette.middleware.cors import CORSMiddleware
import contextlib
import requests
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
executor = ThreadPoolExecutor(max_workers=16)
load_dotenv()
api_key_header = APIKeyHeader(name="Authorization", auto_error=False)
from usage_tracker import UsageTracker
usage_tracker = UsageTracker()
app = FastAPI()
app.add_middleware(GZipMiddleware, minimum_size=1000)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@lru_cache(maxsize=1)
def get_env_vars():
"""
Loads and caches environment variables. This function is memoized
to avoid re-reading .env file on every call, improving performance.
"""
return {
'api_keys': os.getenv('API_KEYS', '').split(','),
'secret_api_endpoint': os.getenv('SECRET_API_ENDPOINT'),
'secret_api_endpoint_2': os.getenv('SECRET_API_ENDPOINT_2'),
'secret_api_endpoint_3': os.getenv('SECRET_API_ENDPOINT_3'),
'secret_api_endpoint_4': os.getenv('SECRET_API_ENDPOINT_4', "https://text.pollinations.ai/openai"),
'secret_api_endpoint_5': os.getenv('SECRET_API_ENDPOINT_5'),
'secret_api_endpoint_6': os.getenv('SECRET_API_ENDPOINT_6'), # New endpoint for Gemini
'mistral_api': os.getenv('MISTRAL_API', "https://api.mistral.ai"),
'mistral_key': os.getenv('MISTRAL_KEY'),
'gemini_key': os.getenv('GEMINI_KEY'), # Gemini API Key
'endpoint_origin': os.getenv('ENDPOINT_ORIGIN'),
'new_img': os.getenv('NEW_IMG') # For image generation API
}
# Define sets of models for different API endpoints for easier routing
mistral_models = {
"mistral-large-latest", "pixtral-large-latest", "mistral-moderation-latest",
"ministral-3b-latest", "ministral-8b-latest", "open-mistral-nemo",
"mistral-small-latest", "mistral-saba-latest", "codestral-latest"
}
pollinations_models = {
"openai", "openai-large", "openai-fast", "openai-xlarge", "openai-reasoning",
"qwen-coder", "llama", "mistral", "searchgpt", "deepseek", "claude-hybridspace",
"deepseek-r1", "deepseek-reasoner", "llamalight", "gemini", "gemini-thinking",
"hormoz", "phi", "phi-mini", "openai-audio", "llama-scaleway"
}
alternate_models = {
"o1", "llama-4-scout", "o4-mini", "sonar", "sonar-pro", "sonar-reasoning",
"sonar-reasoning-pro", "grok-3", "grok-3-fast", "r1-1776", "o3"
}
claude_3_models = {
"claude-3-7-sonnet", "claude-3-7-sonnet-thinking", "claude 3.5 haiku",
"claude 3.5 sonnet", "claude 3.5 haiku", "o3-mini-medium", "o3-mini-high",
"grok-3", "grok-3-thinking", "grok 2"
}
gemini_models = {
"gemini-1.5-pro", "gemini-1.5-flash", "gemini-2.0-flash-lite-preview",
"gemini-2.0-flash", "gemini-2.0-flash-thinking", # aka Reasoning
"gemini-2.0-flash-preview-image-generation", "gemini-2.5-flash",
"gemini-2.5-pro-exp", "gemini-exp-1206"
}
supported_image_models = {
"Flux Pro Ultra", "grok-2-aurora", "Flux Pro", "Flux Pro Ultra Raw",
"Flux Dev", "Flux Schnell", "stable-diffusion-3-large-turbo",
"Flux Realism", "stable-diffusion-ultra", "dall-e-3", "sdxl-lightning-4step"
}
class Payload(BaseModel):
"""Pydantic model for chat completion requests."""
model: str
messages: list
stream: bool = False
class ImageGenerationPayload(BaseModel):
"""Pydantic model for image generation requests."""
model: str
prompt: str
size: str = "1024x1024" # Default size, assuming models support it
number: int = 1
server_status = True # Global flag for server maintenance status
available_model_ids: List[str] = [] # List of all available model IDs
@lru_cache(maxsize=1)
def get_async_client():
"""Returns a memoized httpx.AsyncClient instance for making async HTTP requests."""
return httpx.AsyncClient(
timeout=60.0,
limits=httpx.Limits(max_keepalive_connections=50, max_connections=200)
)
scraper_pool = []
MAX_SCRAPERS = 20
def get_scraper():
"""Retrieves a cloudscraper instance from a pool for web scraping."""
if not scraper_pool:
# Initialize the pool if it's empty (should be done at startup)
for _ in range(MAX_SCRAPERS):
scraper_pool.append(cloudscraper.create_scraper())
# Simple round-robin selection from the pool
return scraper_pool[int(time.time() * 1000) % MAX_SCRAPERS]
async def verify_api_key(
request: Request,
api_key: str = Security(api_key_header)
) -> bool:
"""
Verifies the API key provided in the Authorization header.
Allows access without API key if the request comes from specific Hugging Face spaces.
"""
referer = request.headers.get("referer", "")
if referer.startswith(("https://parthsadaria-lokiai.hf.space/playground",
"https://parthsadaria-lokiai.hf.space/image-playground")):
return True
if not api_key:
raise HTTPException(
status_code=HTTP_403_FORBIDDEN,
detail="No API key provided"
)
if api_key.startswith('Bearer '):
api_key = api_key[7:]
valid_api_keys = get_env_vars().get('api_keys', [])
if not valid_api_keys or valid_api_keys == ['']:
raise HTTPException(
status_code=HTTP_403_FORBIDDEN,
detail="API keys not configured on server"
)
if api_key not in set(valid_api_keys):
raise HTTPException(
status_code=HTTP_403_FORBIDDEN,
detail="Invalid API key"
)
return True
@lru_cache(maxsize=1)
def load_models_data():
"""Loads model data from 'models.json' and caches it."""
try:
file_path = Path(__file__).parent / 'models.json'
with open(file_path, 'r') as f:
return json.load(f)
except (FileNotFoundError, json.JSONDecodeError) as e:
print(f"Error loading models.json: {str(e)}")
return []
@app.get("/api/v1/models")
@app.get("/models")
async def get_models():
"""Returns the list of available models."""
models_data = load_models_data()
if not models_data:
raise HTTPException(status_code=500, detail="Error loading available models")
return models_data
async def generate_search_async(query: str, systemprompt: Optional[str] = None, stream: bool = True):
"""
Asynchronously generates a response using a search-based model.
Streams results if `stream` is True.
"""
queue = asyncio.Queue()
async def _fetch_search_data():
"""Internal helper to fetch data from the search API and put into queue."""
try:
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"}
system_message = systemprompt or "Be Helpful and Friendly"
prompt = [{"role": "user", "content": query}]
prompt.insert(0, {"content": system_message, "role": "system"})
payload = {
"is_vscode_extension": True,
"message_history": prompt,
"requested_model": "searchgpt",
"user_input": prompt[-1]["content"],
}
secret_api_endpoint_3 = get_env_vars()['secret_api_endpoint_3']
if not secret_api_endpoint_3:
await queue.put({"error": "Search API endpoint not configured"})
return
async with httpx.AsyncClient(timeout=30.0) as client:
async with client.stream("POST", secret_api_endpoint_3, json=payload, headers=headers) as response:
if response.status_code != 200:
error_detail = await response.text()
await queue.put({"error": f"Search API returned status code {response.status_code}: {error_detail}"})
return
buffer = ""
async for line in response.aiter_lines():
if line.startswith("data: "):
try:
json_data = json.loads(line[6:])
content = json_data.get("choices", [{}])[0].get("delta", {}).get("content", "")
if content.strip():
cleaned_response = {
"created": json_data.get("created"),
"id": json_data.get("id"),
"model": "searchgpt",
"object": "chat.completion",
"choices": [
{
"message": {
"content": content
}
}
]
}
await queue.put({"data": f"data: {json.dumps(cleaned_response)}\n\n", "text": content})
except json.JSONDecodeError:
# If line is not valid JSON, treat it as raw text and pass through if it's the end of stream
if line.strip() == "[DONE]":
continue # This is usually handled by the aiter_lines loop finishing
print(f"Warning: Could not decode JSON from search API stream: {line}")
await queue.put({"error": f"Invalid JSON from search API: {line}"})
break # Stop processing on bad JSON
await queue.put(None) # Signal end of stream
except Exception as e:
print(f"Error in _fetch_search_data: {e}")
await queue.put({"error": str(e)})
await queue.put(None)
asyncio.create_task(_fetch_search_data())
return queue
@lru_cache(maxsize=10)
def read_html_file(file_path):
"""Reads content of an HTML file and caches it."""
try:
with open(file_path, "r") as file:
return file.read()
except FileNotFoundError:
return None
# Static file routes for basic web assets
@app.get("/favicon.ico")
async def favicon():
favicon_path = Path(__file__).parent / "favicon.ico"
return FileResponse(favicon_path, media_type="image/x-icon")
@app.get("/banner.jpg")
async def banner():
banner_path = Path(__file__).parent / "banner.jpg"
return FileResponse(banner_path, media_type="image/jpeg")
@app.get("/ping")
async def ping():
"""Simple health check endpoint."""
return {"message": "pong", "response_time": "0.000000 seconds"}
@app.get("/", response_class=HTMLResponse)
async def root():
"""Serves the main index.html file."""
html_content = read_html_file("index.html")
if html_content is None:
raise HTTPException(status_code=404, detail="index.html not found")
return HTMLResponse(content=html_content)
@app.get("/script.js", response_class=HTMLResponse)
async def script():
"""Serves script.js."""
html_content = read_html_file("script.js")
if html_content is None:
raise HTTPException(status_code=404, detail="script.js not found")
return HTMLResponse(content=html_content)
@app.get("/style.css", response_class=HTMLResponse)
async def style():
"""Serves style.css."""
html_content = read_html_file("style.css")
if html_content is None:
raise HTTPException(status_code=404, detail="style.css not found")
return HTMLResponse(content=html_content)
@app.get("/dynamo", response_class=HTMLResponse)
async def dynamic_ai_page(request: Request):
"""
Generates a dynamic HTML page using an AI model based on user-agent and IP.
Note: The hardcoded API endpoint and bearer token should ideally be managed
more securely, perhaps via environment variables and proper authentication.
"""
user_agent = request.headers.get('user-agent', 'Unknown User')
client_ip = request.client.host if request.client else "Unknown IP"
location = f"IP: {client_ip}"
prompt = f"""
Generate a dynamic HTML page for a user with the following details: with name "LOKI.AI"
- User-Agent: {user_agent}
- Location: {location}
- Style: Cyberpunk, minimalist, or retro
Make sure the HTML is clean and includes a heading, also have cool animations a motivational message, and a cool background.
Wrap the generated HTML in triple backticks (```).
"""
payload = {
"model": "mistral-small-latest",
"messages": [{"role": "user", "content": prompt}]
}
# Using the local /chat/completions endpoint for internal model call
# This assumes the current server can proxy to Mistral.
# For production, consider direct calls if not proxying is needed.
headers = {
"Authorization": "Bearer playground" # Use a dedicated internal token if available
}
try:
# Use httpx.AsyncClient for making an async request
async with httpx.AsyncClient() as client:
response = await client.post(
f"http://localhost:7860/chat/completions", # Call self or internal API
json=payload,
headers=headers,
timeout=30.0
)
response.raise_for_status() # Raise an exception for bad status codes
data = response.json()
html_content = None
if data and 'choices' in data and len(data['choices']) > 0:
message_content = data['choices'][0].get('message', {}).get('content', '')
# Extract content within triple backticks
match = re.search(r"```(?:html)?(.*?)```", message_content, re.DOTALL)
if match:
html_content = match.group(1).strip()
else:
# Fallback: if no backticks, assume the whole content is HTML
html_content = message_content.strip()
if not html_content:
raise HTTPException(status_code=500, detail="Failed to generate HTML content from AI.")
return HTMLResponse(content=html_content)
except httpx.RequestError as e:
print(f"HTTPX Request Error in /dynamo: {e}")
raise HTTPException(status_code=500, detail=f"Failed to connect to internal AI service: {e}")
except httpx.HTTPStatusError as e:
print(f"HTTPX Status Error in /dynamo: {e.response.status_code} - {e.response.text}")
raise HTTPException(status_code=e.response.status_code, detail=f"Internal AI service responded with error: {e.response.text}")
except Exception as e:
print(f"An unexpected error occurred in /dynamo: {e}")
raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {e}")
@app.get("/scraper", response_class=PlainTextResponse)
async def scrape_site(url: str = Query(..., description="URL to scrape")):
"""
Scrapes the content of a given URL using cloudscraper.
Uses await in front of get_scraper().get() for async execution.
"""
try:
# get_scraper() returns a synchronous scraper object, but we are running
# it in an async endpoint. For CPU-bound tasks like this, it's better
# to offload to a thread pool to not block the event loop.
# However, cloudscraper's get method is typically synchronous.
# If cloudscraper were truly async, we'd use await.
# For now, running in executor to prevent blocking.
loop = asyncio.get_running_loop()
response_text = await loop.run_in_executor(
executor,
lambda: get_scraper().get(url).text
)
if response_text and len(response_text.strip()) > 0:
return PlainTextResponse(response_text)
else:
raise HTTPException(status_code=500, detail="Scraping returned empty content.")
except Exception as e:
print(f"Cloudscraper failed: {e}")
raise HTTPException(status_code=500, detail=f"Cloudscraper failed: {e}")
@app.get("/playground", response_class=HTMLResponse)
async def playground():
"""Serves the playground.html file."""
html_content = read_html_file("playground.html")
if html_content is None:
raise HTTPException(status_code=404, detail="playground.html not found")
return HTMLResponse(content=html_content)
@app.get("/image-playground", response_class=HTMLResponse)
async def image_playground():
"""Serves the image-playground.html file."""
html_content = read_html_file("image-playground.html")
if html_content is None:
raise HTTPException(status_code=404, detail="image-playground.html not found")
return HTMLResponse(content=html_content)
GITHUB_BASE = "[https://raw.githubusercontent.com/Parthsadaria/Vetra/main](https://raw.githubusercontent.com/Parthsadaria/Vetra/main)"
FILES = {
"html": "index.html",
"css": "style.css",
"js": "script.js"
}
async def get_github_file(filename: str) -> Optional[str]:
"""Fetches a file from a specified GitHub raw URL."""
url = f"{GITHUB_BASE}/{filename}"
async with httpx.AsyncClient() as client:
try:
res = await client.get(url, follow_redirects=True)
res.raise_for_status() # Raise an exception for HTTP errors (4xx or 5xx)
return res.text
except httpx.HTTPStatusError as e:
print(f"Error fetching {filename} from GitHub: {e.response.status_code} - {e.response.text}")
return None
except httpx.RequestError as e:
print(f"Request error fetching {filename} from GitHub: {e}")
return None
@app.get("/vetra", response_class=HTMLResponse)
async def serve_vetra():
"""
Serves a dynamic HTML page by fetching HTML, CSS, and JS from GitHub
and embedding them into a single HTML response.
"""
html = await get_github_file(FILES["html"])
css = await get_github_file(FILES["css"])
js = await get_github_file(FILES["js"])
if not html:
raise HTTPException(status_code=404, detail="index.html not found on GitHub")
final_html = html.replace(
"</head>",
f"<style>{css or '/* CSS not found */'}</style></head>"
).replace(
"</body>",
f"<script>{js or '// JS not found'}</script></body>"
)
return HTMLResponse(content=final_html)
@app.get("/searchgpt")
async def search_gpt(q: str, request: Request, stream: Optional[bool] = False, systemprompt: Optional[str] = None):
"""
Endpoint for search-based AI completion.
Records usage and streams results.
"""
if not q:
raise HTTPException(status_code=400, detail="Query parameter 'q' is required")
# Record usage for searchgpt endpoint
usage_tracker.record_request(request=request, model="searchgpt", endpoint="/searchgpt")
queue = await generate_search_async(q, systemprompt=systemprompt, stream=True)
if stream:
async def stream_generator():
"""Generator for streaming search results."""
collected_text = ""
while True:
item = await queue.get()
if item is None:
break
if "error" in item:
# Yield error as a data event so client can handle it gracefully
yield f"data: {json.dumps({'error': item['error']})}\n\n"
break
if "data" in item:
yield item["data"]
collected_text += item.get("text", "")
return StreamingResponse(
stream_generator(),
media_type="text/event-stream"
)
else:
# Non-streaming response: collect all chunks and return as JSON
collected_text = ""
while True:
item = await queue.get()
if item is None:
break
if "error" in item:
raise HTTPException(status_code=500, detail=item["error"])
collected_text += item.get("text", "")
return JSONResponse(content={"response": collected_text})
header_url = os.getenv('HEADER_URL') # This variable should be configured in .env
@app.post("/chat/completions")
@app.post("/api/v1/chat/completions")
async def get_completion(payload: Payload, request: Request, authenticated: bool = Depends(verify_api_key)):
"""
Proxies chat completion requests to various AI model endpoints based on the model specified in the payload.
Records usage and handles streaming responses.
"""
if not server_status:
raise HTTPException(
status_code=503,
detail="Server is under maintenance. Please try again later."
)
model_to_use = payload.model or "gpt-4o-mini" # Default model
# Validate if the requested model is available
if available_model_ids and model_to_use not in set(available_model_ids):
raise HTTPException(
status_code=400,
detail=f"Model '{model_to_use}' is not available. Check /models for the available model list."
)
# Record usage before making the external API call
usage_tracker.record_request(request=request, model=model_to_use, endpoint="/chat/completions")
payload_dict = payload.dict()
payload_dict["model"] = model_to_use # Ensure the payload has the resolved model name
stream_enabled = payload_dict.get("stream", True) # Default to streaming if not specified
env_vars = get_env_vars()
endpoint = None
custom_headers = {}
target_url_path = "/v1/chat/completions" # Default path for OpenAI-like APIs
# Determine the correct endpoint and headers based on the model
if model_to_use in mistral_models:
endpoint = env_vars['mistral_api']
custom_headers = {
"Authorization": f"Bearer {env_vars['mistral_key']}"
}
elif model_to_use in pollinations_models:
endpoint = env_vars['secret_api_endpoint_4']
custom_headers = {} # Pollinations.ai might not require auth
elif model_to_use in alternate_models:
endpoint = env_vars['secret_api_endpoint_2']
custom_headers = {}
elif model_to_use in claude_3_models:
endpoint = env_vars['secret_api_endpoint_5']
custom_headers = {} # Assuming no specific auth needed for this proxy
elif model_to_use in gemini_models:
endpoint = env_vars['secret_api_endpoint_6']
if not endpoint:
raise HTTPException(status_code=500, detail="Gemini API endpoint (SECRET_API_ENDPOINT_6) not configured.")
if not env_vars['gemini_key']:
raise HTTPException(status_code=500, detail="GEMINI_KEY not configured for Gemini models.")
custom_headers = {
"Authorization": f"Bearer {env_vars['gemini_key']}"
}
target_url_path = "/chat/completions" # Gemini's specific path
else:
# Default fallback for other models (e.g., OpenAI compatible APIs)
endpoint = env_vars['secret_api_endpoint']
custom_headers = {
"Origin": header_url,
"Priority": "u=1, i",
"Referer": header_url
}
if not endpoint:
raise HTTPException(status_code=500, detail=f"No API endpoint configured for model: {model_to_use}")
print(f"Proxying request for model '{model_to_use}' to endpoint: {endpoint}{target_url_path}")
async def real_time_stream_generator():
"""Generator to stream responses from the upstream API."""
try:
async with httpx.AsyncClient(timeout=60.0) as client:
# Stream the request to the upstream API
async with client.stream("POST", f"{endpoint}{target_url_path}", json=payload_dict, headers=custom_headers) as response:
# Handle non-2xx responses from the upstream API
if response.status_code >= 400:
error_messages = {
400: "Bad request. Verify input data.",
401: "Unauthorized. Invalid API key for upstream service.",
403: "Forbidden. You do not have access to this resource on upstream.",
404: "The requested resource was not found on upstream.",
422: "Unprocessable entity. Check your payload for upstream API.",
500: "Internal server error from upstream API."
}
detail_message = error_messages.get(response.status_code, f"Upstream error code: {response.status_code}")
# Attempt to read upstream error response body for more detail
try:
error_body = await response.aread()
error_json = json.loads(error_body.decode('utf-8'))
if 'error' in error_json and 'message' in error_json['error']:
detail_message += f" - Upstream detail: {error_json['error']['message']}"
elif 'detail' in error_json:
detail_message += f" - Upstream detail: {error_json['detail']}"
else:
detail_message += f" - Upstream raw: {error_body.decode('utf-8')[:200]}..." # Limit for logging
except (json.JSONDecodeError, UnicodeDecodeError):
detail_message += f" - Upstream raw: {error_body.decode('utf-8', errors='ignore')[:200]}"
raise HTTPException(status_code=response.status_code, detail=detail_message)
# Yield each line from the upstream stream
async for line in response.aiter_lines():
if line:
yield line + "\n"
except httpx.TimeoutException:
raise HTTPException(status_code=504, detail="Request to upstream AI service timed out.")
except httpx.RequestError as e:
raise HTTPException(status_code=502, detail=f"Failed to connect to upstream AI service: {str(e)}")
except Exception as e:
# Re-raise HTTPException if it's already one, otherwise wrap in a 500
if isinstance(e, HTTPException):
raise e
print(f"An unexpected error occurred during chat completion proxy: {e}")
raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {str(e)}")
if stream_enabled:
return StreamingResponse(
real_time_stream_generator(),
media_type="text/event-stream",
headers={
"Content-Type": "text/event-stream",
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no" # Disable buffering for SSE
}
)
else:
# For non-streaming requests, collect all parts and return a single JSON response
response_content_lines = []
async for line in real_time_stream_generator():
response_content_lines.append(line)
full_response_text = "".join(response_content_lines)
# Parse the concatenated stream data. This often involves stripping "data: " prefix
# and combining JSON objects from each line.
parsed_data = []
for line in full_response_text.splitlines():
if line.startswith("data: "):
try:
parsed_data.append(json.loads(line[6:]))
except json.JSONDecodeError:
print(f"Warning: Could not decode JSON line in non-streaming response: {line}")
# Attempt to reconstruct a single coherent JSON response
# This logic might need refinement based on actual API response format for non-streaming
final_json_response = {}
if parsed_data:
# Example: For OpenAI-like API, you might want the last 'choices' part
# This is a simplification and might need adjustment for other APIs
if 'choices' in parsed_data[-1]:
final_json_response = parsed_data[-1]
else:
# Fallback: just return the list of parsed objects
final_json_response = {"response_parts": parsed_data}
if not final_json_response:
# If nothing was parsed, indicate an issue
raise HTTPException(status_code=500, detail="No valid JSON response received from upstream API for non-streaming request.")
return JSONResponse(content=final_json_response)
@app.post("/images/generations")
async def create_image(payload: ImageGenerationPayload, request: Request, authenticated: bool = Depends(verify_api_key)):
"""
Proxies image generation requests to a dedicated image generation API.
Records usage.
"""
if not server_status:
raise HTTPException(
status_code=503,
content={"message": "Server is under maintenance. Please try again later."}
)
if payload.model not in supported_image_models:
raise HTTPException(
status_code=400,
detail=f"Model '{payload.model}' is not supported for image generation. Supported models are: {', '.join(supported_image_models)}"
)
# Record usage for image generation endpoint
usage_tracker.record_request(request=request, model=payload.model, endpoint="/images/generations")
api_payload = {
"model": payload.model,
"prompt": payload.prompt,
"size": payload.size,
"n": payload.number # Often 'n' for number of images in APIs
}
target_api_url = get_env_vars().get('new_img') # Get the image API URL from env vars
if not target_api_url:
raise HTTPException(status_code=500, detail="Image generation API endpoint (NEW_IMG) not configured.")
try:
async with httpx.AsyncClient(timeout=60.0) as client:
response = await client.post(target_api_url, json=api_payload)
response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)
return JSONResponse(content=response.json())
except httpx.TimeoutException:
raise HTTPException(status_code=504, detail="Image generation request timed out.")
except httpx.RequestError as e:
raise HTTPException(status_code=502, detail=f"Error connecting to image generation service: {e}")
except httpx.HTTPStatusError as e:
error_detail = e.response.json().get("detail", f"Image generation failed with status code: {e.response.status_code}")
raise HTTPException(status_code=e.response.status_code, detail=error_detail)
except Exception as e:
print(f"An unexpected error occurred during image generation: {e}")
raise HTTPException(status_code=500, detail=f"An unexpected error occurred during image generation: {e}")
@app.get("/usage")
async def get_usage_json(days: int = 7):
"""
Returns the raw usage data as JSON.
Can specify the number of days for the summary.
"""
return usage_tracker.get_usage_summary(days)
def generate_usage_html(usage_data: Dict[str, Any], days: int = 7): # Added 'days' parameter here
"""
Generates an HTML page to display usage statistics.
Includes tables for model, API endpoint usage, daily usage, and recent requests.
Also includes placeholders for Chart.js to render graphs.
"""
# Prepare data for Chart.js
# Model Usage Chart Data
model_labels = list(usage_data['model_usage_period'].keys())
model_counts = list(usage_data['model_usage_period'].values())
# Endpoint Usage Chart Data
endpoint_labels = list(usage_data['endpoint_usage_period'].keys())
endpoint_counts = list(usage_data['endpoint_usage_period'].values())
# Daily Usage Chart Data
daily_dates = list(usage_data['daily_usage_period'].keys())
daily_requests = [data['requests'] for data in usage_data['daily_usage_period'].values()]
daily_unique_ips = [data['unique_ips_count'] for data in usage_data['daily_usage_period'].values()]
# Format table rows for HTML
model_usage_all_time_rows = "\n".join([
f"""
<tr>
<td>{model}</td>
<td>{stats['total_requests']}</td>
<td>{datetime.datetime.fromisoformat(stats['first_used']).strftime("%Y-%m-%d %H:%M")}</td>
<td>{datetime.datetime.fromisoformat(stats['last_used']).strftime("%Y-%m-%d %H:%M")}</td>
</tr>
""" for model, stats in usage_data['all_time_model_usage'].items()
])
api_usage_all_time_rows = "\n".join([
f"""
<tr>
<td>{endpoint}</td>
<td>{stats['total_requests']}</td>
<td>{datetime.datetime.fromisoformat(stats['first_used']).strftime("%Y-%m-%d %H:%M")}</td>
<td>{datetime.datetime.fromisoformat(stats['last_used']).strftime("%Y-%m-%d %H:%M")}</td>
</tr>
""" for endpoint, stats in usage_data['all_time_endpoint_usage'].items()
])
daily_usage_table_rows = "\n".join([
f"""
<tr>
<td>{date}</td>
<td>{data['requests']}</td>
<td>{data['unique_ips_count']}</td>
</tr>
""" for date, data in usage_data['daily_usage_period'].items()
])
recent_requests_rows = "\n".join([
f"""
<tr>
<td>{datetime.datetime.fromisoformat(req['timestamp']).strftime("%Y-%m-%d %H:%M:%S")}</td>
<td>{req['model']}</td>
<td>{req['endpoint']}</td>
<td>{req['ip_address']}</td>
<td>{req['user_agent']}</td>
</tr>
""" for req in usage_data['recent_requests']
])
html_content = f"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Lokiai AI - Usage Statistics</title>
<link href="[https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap](https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap)" rel="stylesheet">
<script src="[https://cdn.jsdelivr.net/npm/chart.js](https://cdn.jsdelivr.net/npm/chart.js)"></script>
<style>
:root {{
--bg-dark: #0f1011;
--bg-darker: #070708;
--text-primary: #e6e6e6;
--text-secondary: #8c8c8c;
--border-color: #2c2c2c;
--accent-color: #3a6ee0;
--accent-hover: #4a7ef0;
--chart-bg-light: rgba(58, 110, 224, 0.2);
--chart-border-light: #3a6ee0;
}}
body {{
font-family: 'Inter', sans-serif;
background-color: var(--bg-dark);
color: var(--text-primary);
max-width: 1200px;
margin: 0 auto;
padding: 40px 20px;
line-height: 1.6;
}}
.logo {{
display: flex;
align-items: center;
justify-content: center;
margin-bottom: 30px;
}}
.logo h1 {{
font-weight: 700;
font-size: 2.8em;
color: var(--text-primary);
margin-left: 15px;
}}
.logo img {{
width: 70px;
height: 70px;
border-radius: 12px;
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}}
.container {{
background-color: var(--bg-darker);
border-radius: 16px;
padding: 30px;
box-shadow: 0 20px 50px rgba(0,0,0,0.4);
border: 1px solid var(--border-color);
}}
h2, h3 {{
color: var(--text-primary);
border-bottom: 2px solid var(--border-color);
padding-bottom: 12px;
margin-top: 40px;
margin-bottom: 25px;
font-weight: 600;
font-size: 1.8em;
}}
.summary-grid {{
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 20px;
margin-bottom: 30px;
}}
.summary-card {{
background-color: var(--bg-dark);
border-radius: 10px;
padding: 20px;
text-align: center;
border: 1px solid var(--border-color);
box-shadow: 0 8px 20px rgba(0,0,0,0.2);
transition: transform 0.2s ease-in-out;
}}
.summary-card:hover {{
transform: translateY(-5px);
}}
.summary-card h3 {{
margin-top: 0;
font-size: 1.1em;
color: var(--text-secondary);
border-bottom: none;
padding-bottom: 0;
margin-bottom: 10px;
}}
.summary-card p {{
font-size: 2.2em;
font-weight: 700;
color: var(--accent-color);
margin: 0;
}}
table {{
width: 100%;
border-collapse: separate;
border-spacing: 0;
margin-bottom: 40px;
background-color: var(--bg-dark);
border-radius: 10px;
overflow: hidden;
box-shadow: 0 8px 20px rgba(0,0,0,0.2);
}}
th, td {{
border: 1px solid var(--border-color);
padding: 15px;
text-align: left;
transition: background-color 0.3s ease;
}}
th {{
background-color: #1a1a1a;
color: var(--text-primary);
font-weight: 600;
text-transform: uppercase;
font-size: 0.95em;
}}
tr:nth-child(even) {{
background-color: rgba(255,255,255,0.03);
}}
tr:hover {{
background-color: rgba(62,100,255,0.1);
}}
.chart-container {{
background-color: var(--bg-dark);
border-radius: 10px;
padding: 20px;
margin-bottom: 40px;
border: 1px solid var(--border-color);
box-shadow: 0 8px 20px rgba(0,0,0,0.2);
max-height: 400px; /* Limit chart height */
position: relative; /* For responsive canvas */
}}
canvas {{
max-width: 100% !important;
height: auto !important;
}}
@media (max-width: 768px) {{
body {{
padding: 20px 10px;
}}
.container {{
padding: 20px;
}}
.logo h1 {{
font-size: 2em;
}}
.summary-card p {{
font-size: 1.8em;
}}
h2, h3 {{
font-size: 1.5em;
}}
table {{
font-size: 0.85em;
}}
th, td {{
padding: 10px;
}}
}}
</style>
</head>
<body>
<div class="container">
<div class="logo">
<img src="" alt="Lokiai AI Logo">
<h1>Lokiai AI Usage</h1>
</div>
<div class="summary-grid">
<div class="summary-card">
<h3>Total Requests (All Time)</h3>
<p>{usage_data['total_requests']}</p>
</div>
<div class="summary-card">
<h3>Unique IPs (All Time)</h3>
<p>{usage_data['unique_ips_total_count']}</p>
</div>
<div class="summary-card">
<h3>Models Used (Last {days} Days)</h3>
<p>{len(usage_data['model_usage_period'])}</p>
</div>
<div class="summary-card">
<h3>Endpoints Used (Last {days} Days)</h3>
<p>{len(usage_data['endpoint_usage_period'])}</p>
</div>
</div>
<h2>Daily Usage (Last {days} Days)</h2>
<div class="chart-container">
<canvas id="dailyRequestsChart"></canvas>
</div>
<table>
<thead>
<tr>
<th>Date</th>
<th>Requests</th>
<th>Unique IPs</th>
</tr>
</thead>
<tbody>
{daily_usage_table_rows}
</tbody>
</table>
<h2>Model Usage (Last {days} Days)</h2>
<div class="chart-container">
<canvas id="modelUsageChart"></canvas>
</div>
<h3>Model Usage (All Time Details)</h3>
<table>
<thead>
<tr>
<th>Model</th>
<th>Total Requests</th>
<th>First Used</th>
<th>Last Used</th>
</tr>
</thead>
<tbody>
{model_usage_all_time_rows}
</tbody>
</table>
<h2>API Endpoint Usage (Last {days} Days)</h2>
<div class="chart-container">
<canvas id="endpointUsageChart"></canvas>
</div>
<h3>API Endpoint Usage (All Time Details)</h3>
<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Total Requests</th>
<th>First Used</th>
<th>Last Used</th>
</tr>
</thead>
<tbody>
{api_usage_all_time_rows}
</tbody>
</table>
<h2>Recent Requests (Last 20)</h2>
<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Model</th>
<th>Endpoint</th>
<th>IP Address</th>
<th>User Agent</th>
</tr>
</thead>
<tbody>
{recent_requests_rows}
</tbody>
</table>
</div>
<script>
// Chart.js data and rendering logic
const modelLabels = {json.dumps(model_labels)};
const modelCounts = {json.dumps(model_counts)};
const endpointLabels = {json.dumps(endpoint_labels)};
const endpointCounts = {json.dumps(endpoint_counts)};
const dailyDates = {json.dumps(daily_dates)};
const dailyRequests = {json.dumps(daily_requests)};
const dailyUniqueIps = {json.dumps(daily_unique_ips)};
// Model Usage Chart (Bar Chart)
new Chart(document.getElementById('modelUsageChart'), {{
type: 'bar',
data: {{
labels: modelLabels,
datasets: [{{
label: 'Requests',
data: modelCounts,
backgroundColor: 'var(--chart-bg-light)',
borderColor: 'var(--chart-border-light)',
borderWidth: 1,
borderRadius: 5,
}}]
}},
options: {{
responsive: true,
maintainAspectRatio: false,
plugins: {{
legend: {{
labels: {{
color: 'var(--text-primary)'
}}
}},
title: {{
display: true,
text: 'Model Usage',
color: 'var(--text-primary)'
}}
}},
scales: {{
x: {{
ticks: {{
color: 'var(--text-secondary)'
}},
grid: {{
color: 'var(--border-color)'
}}
}},
y: {{
beginAtZero: true,
ticks: {{
color: 'var(--text-secondary)'
}},
grid: {{
color: 'var(--border-color)'
}}
}}
}}
}}
}});
// Endpoint Usage Chart (Doughnut Chart)
new Chart(document.getElementById('endpointUsageChart'), {{
type: 'doughnut',
data: {{
labels: endpointLabels,
datasets: [{{
label: 'Requests',
data: endpointCounts,
backgroundColor: [
'#3a6ee0', '#5b8bff', '#8dc4ff', '#b3d8ff', '#d0e8ff',
'#FF6384', '#36A2EB', '#FFCE56', '#4BC0C0', '#9966FF'
],
hoverOffset: 4
}}]
}},
options: {{
responsive: true,
maintainAspectRatio: false,
plugins: {{
legend: {{
position: 'right',
labels: {{
color: 'var(--text-primary)'
}}
}},
title: {{
display: true,
text: 'API Endpoint Usage',
color: 'var(--text-primary)'
}}
}}
}}
}});
// Daily Requests Chart (Line Chart)
new Chart(document.getElementById('dailyRequestsChart'), {{
type: 'line',
data: {{
labels: dailyDates,
datasets: [
{{
label: 'Total Requests',
data: dailyRequests,
borderColor: 'var(--accent-color)',
backgroundColor: 'rgba(58, 110, 224, 0.1)',
fill: true,
tension: 0.3
}},
{{
label: 'Unique IPs',
data: dailyUniqueIps,
borderColor: '#FFCE56', // A distinct color for unique IPs
backgroundColor: 'rgba(255, 206, 86, 0.1)',
fill: true,
tension: 0.3
}}
]
}},
options: {{
responsive: true,
maintainAspectRatio: false,
plugins: {{
legend: {{
labels: {{
color: 'var(--text-primary)'
}}
}},
title: {{
display: true,
text: 'Daily Requests and Unique IPs',
color: 'var(--text-primary)'
}}
}},
scales: {{
x: {{
ticks: {{
color: 'var(--text-secondary)'
}},
grid: {{
color: 'var(--border-color)'
}}
}},
y: {{
beginAtZero: true,
ticks: {{
color: 'var(--text-secondary)'
}},
grid: {{
color: 'var(--border-color)'
}}
}}
}}
}}
}});
</script>
</body>
</html>
"""
return html_content
@app.get("/usage/page", response_class=HTMLResponse)
async def usage_page(days: int = 7):
"""
Serves the usage statistics as an HTML page.
"""
usage_data = await get_usage_json(days)
html = generate_usage_html(usage_data, days)
return HTMLResponse(content=html)
@app.on_event("startup")
async def startup_event():
"""
Actions to perform on application startup:
- Load available model IDs.
- Initialize scraper pool.
- Check for missing environment variables and issue warnings.
"""
global available_model_ids
# Load models from a local models.json file first
models_data = load_models_data()
# Extract model IDs from dicts (assuming each dict has a 'id' key)
available_model_ids = [m['id'] for m in models_data if isinstance(m, dict) and 'id' in m]
print(f"Loaded {len(available_model_ids)} model IDs from models.json")
# Extend with hardcoded model lists for various providers
available_model_ids.extend(list(pollinations_models))
available_model_ids.extend(list(alternate_models))
available_model_ids.extend(list(mistral_models))
available_model_ids.extend(list(claude_3_models))
available_model_ids.extend(list(gemini_models)) # Add Gemini models explicitly
# Remove duplicates and store as a set for faster lookups
available_model_ids = list(set(available_model_ids))
print(f"Total unique available models after merging: {len(available_model_ids)}")
# Initialize scraper pool
for _ in range(MAX_SCRAPERS):
scraper_pool.append(cloudscraper.create_scraper())
print(f"Initialized Cloudscraper pool with {MAX_SCRAPERS} instances.")
# Environment variable check for critical services
env_vars = get_env_vars()
missing_vars = []
if not env_vars['api_keys'] or env_vars['api_keys'] == ['']:
missing_vars.append('API_KEYS')
if not env_vars['secret_api_endpoint']:
missing_vars.append('SECRET_API_ENDPOINT')
if not env_vars['secret_api_endpoint_2']:
missing_vars.append('SECRET_API_ENDPOINT_2')
if not env_vars['secret_api_endpoint_3']:
missing_vars.append('SECRET_API_ENDPOINT_3')
if not env_vars['secret_api_endpoint_4'] and any(model in pollinations_models for model in available_model_ids):
missing_vars.append('SECRET_API_ENDPOINT_4 (Pollinations.ai)')
if not env_vars['secret_api_endpoint_5'] and any(model in claude_3_models for model in available_model_ids):
missing_vars.append('SECRET_API_ENDPOINT_5 (Claude 3.x)')
if not env_vars['secret_api_endpoint_6'] and any(model in gemini_models for model in available_model_ids):
missing_vars.append('SECRET_API_ENDPOINT_6 (Gemini)')
if not env_vars['mistral_api'] and any(model in mistral_models for model in available_model_ids):
missing_vars.append('MISTRAL_API')
if not env_vars['mistral_key'] and any(model in mistral_models for model in available_model_ids):
missing_vars.append('MISTRAL_KEY')
if not env_vars['gemini_key'] and any(model in gemini_models for model in available_model_ids):
missing_vars.append('GEMINI_KEY')
if not env_vars['new_img'] and len(supported_image_models) > 0:
missing_vars.append('NEW_IMG (Image Generation)')
if missing_vars:
print(f"WARNING: The following critical environment variables are missing or empty: {', '.join(missing_vars)}")
print("Some server functionality (e.g., specific AI models, image generation) may be limited or unavailable.")
else:
print("All critical environment variables appear to be configured.")
print("Server started successfully!")
@app.on_event("shutdown")
async def shutdown_event():
"""
Actions to perform on application shutdown:
- Close HTTPX client.
- Clear scraper pool.
- Save usage data to disk.
"""
client = get_async_client()
await client.aclose() # Ensure the httpx client connection pool is closed
scraper_pool.clear() # Clear the scraper pool
usage_tracker.save_data() # Persist usage data on shutdown
print("Server shutdown complete!")
@app.get("/health")
async def health_check():
"""
Provides a health check endpoint, reporting server status and missing critical environment variables.
"""
env_vars = get_env_vars()
missing_critical_vars = []
# Re-check critical environment variables for health status
if not env_vars['api_keys'] or env_vars['api_keys'] == ['']:
missing_critical_vars.append('API_KEYS')
if not env_vars['secret_api_endpoint']:
missing_critical_vars.append('SECRET_API_ENDPOINT')
if not env_vars['secret_api_endpoint_2']:
missing_critical_vars.append('SECRET_API_ENDPOINT_2')
if not env_vars['secret_api_endpoint_3']:
missing_critical_vars.append('SECRET_API_ENDPOINT_3')
# Check for specific service endpoints only if corresponding models are configured/supported
if not env_vars['secret_api_endpoint_4'] and any(model in pollinations_models for model in available_model_ids):
missing_critical_vars.append('SECRET_API_ENDPOINT_4 (Pollinations.ai)')
if not env_vars['secret_api_endpoint_5'] and any(model in claude_3_models for model in available_model_ids):
missing_critical_vars.append('SECRET_API_ENDPOINT_5 (Claude 3.x)')
if not env_vars['secret_api_endpoint_6'] and any(model in gemini_models for model in available_model_ids):
missing_critical_vars.append('SECRET_API_ENDPOINT_6 (Gemini)')
if not env_vars['mistral_api'] and any(model in mistral_models for model in available_model_ids):
missing_critical_vars.append('MISTRAL_API')
if not env_vars['mistral_key'] and any(model in mistral_models for model in available_model_ids):
missing_critical_vars.append('MISTRAL_KEY')
if not env_vars['gemini_key'] and any(model in gemini_models for model in available_model_ids):
missing_critical_vars.append('GEMINI_KEY')
if not env_vars['new_img'] and len(supported_image_models) > 0:
missing_critical_vars.append('NEW_IMG (Image Generation)')
health_status = {
"status": "healthy" if not missing_critical_vars else "unhealthy",
"missing_env_vars": missing_critical_vars,
"server_status": server_status, # Reports global server status flag
"message": "Everything's lit! π" if not missing_critical_vars else "Uh oh, some env vars are missing. π¬"
}
return JSONResponse(content=health_status)
if __name__ == "__main__":
import uvicorn
# When running directly, ensure startup_event is called to load models and check env vars
# uvicorn handles startup/shutdown events automatically when run with `uvicorn.run()`
uvicorn.run(app, host="0.0.0.0", port=7860)
|