File size: 57,150 Bytes
4986fe4
f97c315
 
925b0de
 
f97c315
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f97c315
925b0de
 
dc21031
925b0de
a06f1b3
925b0de
ab07513
f97c315
 
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f97c315
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f97c315
925b0de
 
 
 
 
 
 
 
378f2c3
925b0de
16f4d5b
c3d5a54
ab07513
925b0de
ab07513
 
925b0de
 
f97c315
925b0de
 
1f0a039
925b0de
 
 
 
 
 
 
f97c315
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
f97c315
925b0de
 
 
 
 
 
 
 
 
 
1f0a039
925b0de
 
 
 
 
1f0a039
925b0de
 
ab07513
925b0de
 
 
 
 
 
396b35b
925b0de
 
 
 
 
f97c315
925b0de
396b35b
925b0de
 
 
f97c315
925b0de
 
f97c315
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f0a039
396b35b
925b0de
 
396b35b
925b0de
396b35b
1f0a039
396b35b
a01be99
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f97c315
0a0ab04
925b0de
 
 
 
 
 
 
 
 
 
1f0a039
925b0de
 
 
 
 
 
 
 
 
 
1f0a039
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
ab07513
 
925b0de
 
 
 
 
 
f97c315
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab07513
925b0de
 
ab07513
925b0de
 
 
 
 
 
 
396b35b
925b0de
 
 
 
 
 
 
ab07513
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab07513
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c30ac5e
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceb203a
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceb203a
925b0de
 
 
 
 
 
 
 
 
f97c315
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f97c315
 
 
925b0de
 
 
1f0a039
ab07513
925b0de
ea75284
 
 
 
f97c315
925b0de
 
 
ea75284
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea75284
 
 
c20175b
925b0de
 
 
c20175b
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f97c315
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c20175b
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c20175b
925b0de
f97c315
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f97c315
 
925b0de
 
 
f97c315
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f97c315
 
ea75284
 
 
925b0de
9949594
 
 
 
 
 
 
 
925b0de
 
 
 
 
 
 
 
 
 
 
c30ac5e
 
 
925b0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b57c30
6a84e5c
925b0de
 
 
3b8f2de
f97c315
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
import os
import re
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException, Request, Depends, Security, Query
from fastapi.responses import StreamingResponse, HTMLResponse, JSONResponse, FileResponse, PlainTextResponse
from fastapi.security import APIKeyHeader
from pydantic import BaseModel
import httpx
from functools import lru_cache
from pathlib import Path
import json
import datetime
import time
import threading
from typing import Optional, Dict, List, Any, Generator
import asyncio
from starlette.status import HTTP_403_FORBIDDEN
import cloudscraper
from concurrent.futures import ThreadPoolExecutor
import uvloop
from fastapi.middleware.gzip import GZipMiddleware
from starlette.middleware.cors import CORSMiddleware
import contextlib
import requests

asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())

executor = ThreadPoolExecutor(max_workers=16)

load_dotenv()

api_key_header = APIKeyHeader(name="Authorization", auto_error=False)

from usage_tracker import UsageTracker
usage_tracker = UsageTracker()

app = FastAPI()

app.add_middleware(GZipMiddleware, minimum_size=1000)
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@lru_cache(maxsize=1)
def get_env_vars():
    """
    Loads and caches environment variables. This function is memoized
    to avoid re-reading .env file on every call, improving performance.
    """
    return {
        'api_keys': os.getenv('API_KEYS', '').split(','),
        'secret_api_endpoint': os.getenv('SECRET_API_ENDPOINT'),
        'secret_api_endpoint_2': os.getenv('SECRET_API_ENDPOINT_2'),
        'secret_api_endpoint_3': os.getenv('SECRET_API_ENDPOINT_3'),
        'secret_api_endpoint_4': os.getenv('SECRET_API_ENDPOINT_4', "https://text.pollinations.ai/openai"),
        'secret_api_endpoint_5': os.getenv('SECRET_API_ENDPOINT_5'),
        'secret_api_endpoint_6': os.getenv('SECRET_API_ENDPOINT_6'), # New endpoint for Gemini
        'mistral_api': os.getenv('MISTRAL_API', "https://api.mistral.ai"),
        'mistral_key': os.getenv('MISTRAL_KEY'),
        'gemini_key': os.getenv('GEMINI_KEY'), # Gemini API Key
        'endpoint_origin': os.getenv('ENDPOINT_ORIGIN'),
        'new_img': os.getenv('NEW_IMG') # For image generation API
    }

# Define sets of models for different API endpoints for easier routing
mistral_models = {
    "mistral-large-latest", "pixtral-large-latest", "mistral-moderation-latest",
    "ministral-3b-latest", "ministral-8b-latest", "open-mistral-nemo",
    "mistral-small-latest", "mistral-saba-latest", "codestral-latest"
}

pollinations_models = {
    "openai", "openai-large", "openai-fast", "openai-xlarge", "openai-reasoning",
    "qwen-coder", "llama", "mistral", "searchgpt", "deepseek", "claude-hybridspace",
    "deepseek-r1", "deepseek-reasoner", "llamalight", "gemini", "gemini-thinking",
    "hormoz", "phi", "phi-mini", "openai-audio", "llama-scaleway"
}
alternate_models = {
    "o1", "llama-4-scout", "o4-mini", "sonar", "sonar-pro", "sonar-reasoning",
    "sonar-reasoning-pro", "grok-3", "grok-3-fast", "r1-1776", "o3"
}

claude_3_models = {
    "claude-3-7-sonnet", "claude-3-7-sonnet-thinking", "claude 3.5 haiku",
    "claude 3.5 sonnet", "claude 3.5 haiku", "o3-mini-medium", "o3-mini-high",
    "grok-3", "grok-3-thinking", "grok 2"
}

gemini_models = {
    "gemini-1.5-pro", "gemini-1.5-flash", "gemini-2.0-flash-lite-preview",
    "gemini-2.0-flash", "gemini-2.0-flash-thinking",  # aka Reasoning
    "gemini-2.0-flash-preview-image-generation", "gemini-2.5-flash",
    "gemini-2.5-pro-exp", "gemini-exp-1206"
}

supported_image_models = {
    "Flux Pro Ultra", "grok-2-aurora", "Flux Pro", "Flux Pro Ultra Raw",
    "Flux Dev", "Flux Schnell", "stable-diffusion-3-large-turbo",
    "Flux Realism", "stable-diffusion-ultra", "dall-e-3", "sdxl-lightning-4step"
}

class Payload(BaseModel):
    """Pydantic model for chat completion requests."""
    model: str
    messages: list
    stream: bool = False

class ImageGenerationPayload(BaseModel):
    """Pydantic model for image generation requests."""
    model: str
    prompt: str
    size: str = "1024x1024" # Default size, assuming models support it
    number: int = 1

server_status = True # Global flag for server maintenance status
available_model_ids: List[str] = [] # List of all available model IDs

@lru_cache(maxsize=1)
def get_async_client():
    """Returns a memoized httpx.AsyncClient instance for making async HTTP requests."""
    return httpx.AsyncClient(
        timeout=60.0,
        limits=httpx.Limits(max_keepalive_connections=50, max_connections=200)
    )

scraper_pool = []
MAX_SCRAPERS = 20

def get_scraper():
    """Retrieves a cloudscraper instance from a pool for web scraping."""
    if not scraper_pool:
        # Initialize the pool if it's empty (should be done at startup)
        for _ in range(MAX_SCRAPERS):
            scraper_pool.append(cloudscraper.create_scraper())
    # Simple round-robin selection from the pool
    return scraper_pool[int(time.time() * 1000) % MAX_SCRAPERS]

async def verify_api_key(
    request: Request,
    api_key: str = Security(api_key_header)
) -> bool:
    """
    Verifies the API key provided in the Authorization header.
    Allows access without API key if the request comes from specific Hugging Face spaces.
    """
    referer = request.headers.get("referer", "")
    if referer.startswith(("https://parthsadaria-lokiai.hf.space/playground",
                           "https://parthsadaria-lokiai.hf.space/image-playground")):
        return True

    if not api_key:
        raise HTTPException(
            status_code=HTTP_403_FORBIDDEN,
            detail="No API key provided"
        )

    if api_key.startswith('Bearer '):
        api_key = api_key[7:]

    valid_api_keys = get_env_vars().get('api_keys', [])
    if not valid_api_keys or valid_api_keys == ['']:
        raise HTTPException(
            status_code=HTTP_403_FORBIDDEN,
            detail="API keys not configured on server"
        )

    if api_key not in set(valid_api_keys):
        raise HTTPException(
            status_code=HTTP_403_FORBIDDEN,
            detail="Invalid API key"
        )

    return True

@lru_cache(maxsize=1)
def load_models_data():
    """Loads model data from 'models.json' and caches it."""
    try:
        file_path = Path(__file__).parent / 'models.json'
        with open(file_path, 'r') as f:
            return json.load(f)
    except (FileNotFoundError, json.JSONDecodeError) as e:
        print(f"Error loading models.json: {str(e)}")
        return []

@app.get("/api/v1/models")
@app.get("/models")
async def get_models():
    """Returns the list of available models."""
    models_data = load_models_data()
    if not models_data:
        raise HTTPException(status_code=500, detail="Error loading available models")
    return models_data

async def generate_search_async(query: str, systemprompt: Optional[str] = None, stream: bool = True):
    """
    Asynchronously generates a response using a search-based model.
    Streams results if `stream` is True.
    """
    queue = asyncio.Queue()

    async def _fetch_search_data():
        """Internal helper to fetch data from the search API and put into queue."""
        try:
            headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"}
            system_message = systemprompt or "Be Helpful and Friendly"
            prompt = [{"role": "user", "content": query}]
            prompt.insert(0, {"content": system_message, "role": "system"})
            payload = {
                "is_vscode_extension": True,
                "message_history": prompt,
                "requested_model": "searchgpt",
                "user_input": prompt[-1]["content"],
            }
            secret_api_endpoint_3 = get_env_vars()['secret_api_endpoint_3']
            if not secret_api_endpoint_3:
                await queue.put({"error": "Search API endpoint not configured"})
                return

            async with httpx.AsyncClient(timeout=30.0) as client:
                async with client.stream("POST", secret_api_endpoint_3, json=payload, headers=headers) as response:
                    if response.status_code != 200:
                        error_detail = await response.text()
                        await queue.put({"error": f"Search API returned status code {response.status_code}: {error_detail}"})
                        return

                    buffer = ""
                    async for line in response.aiter_lines():
                        if line.startswith("data: "):
                            try:
                                json_data = json.loads(line[6:])
                                content = json_data.get("choices", [{}])[0].get("delta", {}).get("content", "")
                                if content.strip():
                                    cleaned_response = {
                                        "created": json_data.get("created"),
                                        "id": json_data.get("id"),
                                        "model": "searchgpt",
                                        "object": "chat.completion",
                                        "choices": [
                                            {
                                                "message": {
                                                    "content": content
                                                }
                                            }
                                        ]
                                    }
                                    await queue.put({"data": f"data: {json.dumps(cleaned_response)}\n\n", "text": content})
                            except json.JSONDecodeError:
                                # If line is not valid JSON, treat it as raw text and pass through if it's the end of stream
                                if line.strip() == "[DONE]":
                                    continue # This is usually handled by the aiter_lines loop finishing
                                print(f"Warning: Could not decode JSON from search API stream: {line}")
                                await queue.put({"error": f"Invalid JSON from search API: {line}"})
                                break # Stop processing on bad JSON
                    await queue.put(None) # Signal end of stream
        except Exception as e:
            print(f"Error in _fetch_search_data: {e}")
            await queue.put({"error": str(e)})
            await queue.put(None)

    asyncio.create_task(_fetch_search_data())
    return queue

@lru_cache(maxsize=10)
def read_html_file(file_path):
    """Reads content of an HTML file and caches it."""
    try:
        with open(file_path, "r") as file:
            return file.read()
    except FileNotFoundError:
        return None

# Static file routes for basic web assets
@app.get("/favicon.ico")
async def favicon():
    favicon_path = Path(__file__).parent / "favicon.ico"
    return FileResponse(favicon_path, media_type="image/x-icon")

@app.get("/banner.jpg")
async def banner():
    banner_path = Path(__file__).parent / "banner.jpg"
    return FileResponse(banner_path, media_type="image/jpeg")

@app.get("/ping")
async def ping():
    """Simple health check endpoint."""
    return {"message": "pong", "response_time": "0.000000 seconds"}

@app.get("/", response_class=HTMLResponse)
async def root():
    """Serves the main index.html file."""
    html_content = read_html_file("index.html")
    if html_content is None:
        raise HTTPException(status_code=404, detail="index.html not found")
    return HTMLResponse(content=html_content)

@app.get("/script.js", response_class=HTMLResponse)
async def script():
    """Serves script.js."""
    html_content = read_html_file("script.js")
    if html_content is None:
        raise HTTPException(status_code=404, detail="script.js not found")
    return HTMLResponse(content=html_content)

@app.get("/style.css", response_class=HTMLResponse)
async def style():
    """Serves style.css."""
    html_content = read_html_file("style.css")
    if html_content is None:
        raise HTTPException(status_code=404, detail="style.css not found")
    return HTMLResponse(content=html_content)

@app.get("/dynamo", response_class=HTMLResponse)
async def dynamic_ai_page(request: Request):
    """
    Generates a dynamic HTML page using an AI model based on user-agent and IP.
    Note: The hardcoded API endpoint and bearer token should ideally be managed
    more securely, perhaps via environment variables and proper authentication.
    """
    user_agent = request.headers.get('user-agent', 'Unknown User')
    client_ip = request.client.host if request.client else "Unknown IP"
    location = f"IP: {client_ip}"

    prompt = f"""
    Generate a dynamic HTML page for a user with the following details: with name "LOKI.AI"
    - User-Agent: {user_agent}
    - Location: {location}
    - Style: Cyberpunk, minimalist, or retro

    Make sure the HTML is clean and includes a heading, also have cool animations a motivational message, and a cool background.
    Wrap the generated HTML in triple backticks (```).
    """

    payload = {
        "model": "mistral-small-latest",
        "messages": [{"role": "user", "content": prompt}]
    }

    # Using the local /chat/completions endpoint for internal model call
    # This assumes the current server can proxy to Mistral.
    # For production, consider direct calls if not proxying is needed.
    headers = {
        "Authorization": "Bearer playground" # Use a dedicated internal token if available
    }

    try:
        # Use httpx.AsyncClient for making an async request
        async with httpx.AsyncClient() as client:
            response = await client.post(
                f"http://localhost:7860/chat/completions", # Call self or internal API
                json=payload,
                headers=headers,
                timeout=30.0
            )
        response.raise_for_status() # Raise an exception for bad status codes
        data = response.json()

        html_content = None
        if data and 'choices' in data and len(data['choices']) > 0:
            message_content = data['choices'][0].get('message', {}).get('content', '')
            # Extract content within triple backticks
            match = re.search(r"```(?:html)?(.*?)```", message_content, re.DOTALL)
            if match:
                html_content = match.group(1).strip()
            else:
                # Fallback: if no backticks, assume the whole content is HTML
                html_content = message_content.strip()

        if not html_content:
            raise HTTPException(status_code=500, detail="Failed to generate HTML content from AI.")
        
        return HTMLResponse(content=html_content)
    except httpx.RequestError as e:
        print(f"HTTPX Request Error in /dynamo: {e}")
        raise HTTPException(status_code=500, detail=f"Failed to connect to internal AI service: {e}")
    except httpx.HTTPStatusError as e:
        print(f"HTTPX Status Error in /dynamo: {e.response.status_code} - {e.response.text}")
        raise HTTPException(status_code=e.response.status_code, detail=f"Internal AI service responded with error: {e.response.text}")
    except Exception as e:
        print(f"An unexpected error occurred in /dynamo: {e}")
        raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {e}")


@app.get("/scraper", response_class=PlainTextResponse)
async def scrape_site(url: str = Query(..., description="URL to scrape")):
    """
    Scrapes the content of a given URL using cloudscraper.
    Uses await in front of get_scraper().get() for async execution.
    """
    try:
        # get_scraper() returns a synchronous scraper object, but we are running
        # it in an async endpoint. For CPU-bound tasks like this, it's better
        # to offload to a thread pool to not block the event loop.
        # However, cloudscraper's get method is typically synchronous.
        # If cloudscraper were truly async, we'd use await.
        # For now, running in executor to prevent blocking.
        loop = asyncio.get_running_loop()
        response_text = await loop.run_in_executor(
            executor,
            lambda: get_scraper().get(url).text
        )

        if response_text and len(response_text.strip()) > 0:
            return PlainTextResponse(response_text)
        else:
            raise HTTPException(status_code=500, detail="Scraping returned empty content.")
    except Exception as e:
        print(f"Cloudscraper failed: {e}")
        raise HTTPException(status_code=500, detail=f"Cloudscraper failed: {e}")

@app.get("/playground", response_class=HTMLResponse)
async def playground():
    """Serves the playground.html file."""
    html_content = read_html_file("playground.html")
    if html_content is None:
        raise HTTPException(status_code=404, detail="playground.html not found")
    return HTMLResponse(content=html_content)

@app.get("/image-playground", response_class=HTMLResponse)
async def image_playground():
    """Serves the image-playground.html file."""
    html_content = read_html_file("image-playground.html")
    if html_content is None:
        raise HTTPException(status_code=404, detail="image-playground.html not found")
    return HTMLResponse(content=html_content)

GITHUB_BASE = "[https://raw.githubusercontent.com/Parthsadaria/Vetra/main](https://raw.githubusercontent.com/Parthsadaria/Vetra/main)"

FILES = {
    "html": "index.html",
    "css": "style.css",
    "js": "script.js"
}

async def get_github_file(filename: str) -> Optional[str]:
    """Fetches a file from a specified GitHub raw URL."""
    url = f"{GITHUB_BASE}/{filename}"
    async with httpx.AsyncClient() as client:
        try:
            res = await client.get(url, follow_redirects=True)
            res.raise_for_status() # Raise an exception for HTTP errors (4xx or 5xx)
            return res.text
        except httpx.HTTPStatusError as e:
            print(f"Error fetching {filename} from GitHub: {e.response.status_code} - {e.response.text}")
            return None
        except httpx.RequestError as e:
            print(f"Request error fetching {filename} from GitHub: {e}")
            return None

@app.get("/vetra", response_class=HTMLResponse)
async def serve_vetra():
    """
    Serves a dynamic HTML page by fetching HTML, CSS, and JS from GitHub
    and embedding them into a single HTML response.
    """
    html = await get_github_file(FILES["html"])
    css = await get_github_file(FILES["css"])
    js = await get_github_file(FILES["js"])

    if not html:
        raise HTTPException(status_code=404, detail="index.html not found on GitHub")

    final_html = html.replace(
        "</head>",
        f"<style>{css or '/* CSS not found */'}</style></head>"
    ).replace(
        "</body>",
        f"<script>{js or '// JS not found'}</script></body>"
    )

    return HTMLResponse(content=final_html)

@app.get("/searchgpt")
async def search_gpt(q: str, request: Request, stream: Optional[bool] = False, systemprompt: Optional[str] = None):
    """
    Endpoint for search-based AI completion.
    Records usage and streams results.
    """
    if not q:
        raise HTTPException(status_code=400, detail="Query parameter 'q' is required")

    # Record usage for searchgpt endpoint
    usage_tracker.record_request(request=request, model="searchgpt", endpoint="/searchgpt")

    queue = await generate_search_async(q, systemprompt=systemprompt, stream=True)

    if stream:
        async def stream_generator():
            """Generator for streaming search results."""
            collected_text = ""
            while True:
                item = await queue.get()
                if item is None:
                    break

                if "error" in item:
                    # Yield error as a data event so client can handle it gracefully
                    yield f"data: {json.dumps({'error': item['error']})}\n\n"
                    break

                if "data" in item:
                    yield item["data"]
                    collected_text += item.get("text", "")

        return StreamingResponse(
            stream_generator(),
            media_type="text/event-stream"
        )
    else:
        # Non-streaming response: collect all chunks and return as JSON
        collected_text = ""
        while True:
            item = await queue.get()
            if item is None:
                break

            if "error" in item:
                raise HTTPException(status_code=500, detail=item["error"])

            collected_text += item.get("text", "")

        return JSONResponse(content={"response": collected_text})

header_url = os.getenv('HEADER_URL') # This variable should be configured in .env

@app.post("/chat/completions")
@app.post("/api/v1/chat/completions")
async def get_completion(payload: Payload, request: Request, authenticated: bool = Depends(verify_api_key)):
    """
    Proxies chat completion requests to various AI model endpoints based on the model specified in the payload.
    Records usage and handles streaming responses.
    """
    if not server_status:
        raise HTTPException(
            status_code=503,
            detail="Server is under maintenance. Please try again later."
        )

    model_to_use = payload.model or "gpt-4o-mini" # Default model

    # Validate if the requested model is available
    if available_model_ids and model_to_use not in set(available_model_ids):
        raise HTTPException(
            status_code=400,
            detail=f"Model '{model_to_use}' is not available. Check /models for the available model list."
        )

    # Record usage before making the external API call
    usage_tracker.record_request(request=request, model=model_to_use, endpoint="/chat/completions")

    payload_dict = payload.dict()
    payload_dict["model"] = model_to_use # Ensure the payload has the resolved model name

    stream_enabled = payload_dict.get("stream", True) # Default to streaming if not specified

    env_vars = get_env_vars()

    endpoint = None
    custom_headers = {}
    target_url_path = "/v1/chat/completions" # Default path for OpenAI-like APIs

    # Determine the correct endpoint and headers based on the model
    if model_to_use in mistral_models:
        endpoint = env_vars['mistral_api']
        custom_headers = {
            "Authorization": f"Bearer {env_vars['mistral_key']}"
        }
    elif model_to_use in pollinations_models:
        endpoint = env_vars['secret_api_endpoint_4']
        custom_headers = {} # Pollinations.ai might not require auth
    elif model_to_use in alternate_models:
        endpoint = env_vars['secret_api_endpoint_2']
        custom_headers = {}
    elif model_to_use in claude_3_models:
        endpoint = env_vars['secret_api_endpoint_5']
        custom_headers = {} # Assuming no specific auth needed for this proxy
    elif model_to_use in gemini_models:
        endpoint = env_vars['secret_api_endpoint_6']
        if not endpoint:
             raise HTTPException(status_code=500, detail="Gemini API endpoint (SECRET_API_ENDPOINT_6) not configured.")
        if not env_vars['gemini_key']:
             raise HTTPException(status_code=500, detail="GEMINI_KEY not configured for Gemini models.")
        custom_headers = {
            "Authorization": f"Bearer {env_vars['gemini_key']}"
        }
        target_url_path = "/chat/completions" # Gemini's specific path
    else:
        # Default fallback for other models (e.g., OpenAI compatible APIs)
        endpoint = env_vars['secret_api_endpoint']
        custom_headers = {
            "Origin": header_url,
            "Priority": "u=1, i",
            "Referer": header_url
        }

    if not endpoint:
        raise HTTPException(status_code=500, detail=f"No API endpoint configured for model: {model_to_use}")

    print(f"Proxying request for model '{model_to_use}' to endpoint: {endpoint}{target_url_path}")

    async def real_time_stream_generator():
        """Generator to stream responses from the upstream API."""
        try:
            async with httpx.AsyncClient(timeout=60.0) as client:
                # Stream the request to the upstream API
                async with client.stream("POST", f"{endpoint}{target_url_path}", json=payload_dict, headers=custom_headers) as response:
                    # Handle non-2xx responses from the upstream API
                    if response.status_code >= 400:
                        error_messages = {
                            400: "Bad request. Verify input data.",
                            401: "Unauthorized. Invalid API key for upstream service.",
                            403: "Forbidden. You do not have access to this resource on upstream.",
                            404: "The requested resource was not found on upstream.",
                            422: "Unprocessable entity. Check your payload for upstream API.",
                            500: "Internal server error from upstream API."
                        }
                        detail_message = error_messages.get(response.status_code, f"Upstream error code: {response.status_code}")
                        
                        # Attempt to read upstream error response body for more detail
                        try:
                            error_body = await response.aread()
                            error_json = json.loads(error_body.decode('utf-8'))
                            if 'error' in error_json and 'message' in error_json['error']:
                                detail_message += f" - Upstream detail: {error_json['error']['message']}"
                            elif 'detail' in error_json:
                                detail_message += f" - Upstream detail: {error_json['detail']}"
                            else:
                                detail_message += f" - Upstream raw: {error_body.decode('utf-8')[:200]}..." # Limit for logging
                        except (json.JSONDecodeError, UnicodeDecodeError):
                            detail_message += f" - Upstream raw: {error_body.decode('utf-8', errors='ignore')[:200]}"
                        
                        raise HTTPException(status_code=response.status_code, detail=detail_message)

                    # Yield each line from the upstream stream
                    async for line in response.aiter_lines():
                        if line:
                            yield line + "\n"
        except httpx.TimeoutException:
            raise HTTPException(status_code=504, detail="Request to upstream AI service timed out.")
        except httpx.RequestError as e:
            raise HTTPException(status_code=502, detail=f"Failed to connect to upstream AI service: {str(e)}")
        except Exception as e:
            # Re-raise HTTPException if it's already one, otherwise wrap in a 500
            if isinstance(e, HTTPException):
                raise e
            print(f"An unexpected error occurred during chat completion proxy: {e}")
            raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {str(e)}")

    if stream_enabled:
        return StreamingResponse(
            real_time_stream_generator(),
            media_type="text/event-stream",
            headers={
                "Content-Type": "text/event-stream",
                "Cache-Control": "no-cache",
                "Connection": "keep-alive",
                "X-Accel-Buffering": "no" # Disable buffering for SSE
            }
        )
    else:
        # For non-streaming requests, collect all parts and return a single JSON response
        response_content_lines = []
        async for line in real_time_stream_generator():
            response_content_lines.append(line)
        
        full_response_text = "".join(response_content_lines)
        
        # Parse the concatenated stream data. This often involves stripping "data: " prefix
        # and combining JSON objects from each line.
        parsed_data = []
        for line in full_response_text.splitlines():
            if line.startswith("data: "):
                try:
                    parsed_data.append(json.loads(line[6:]))
                except json.JSONDecodeError:
                    print(f"Warning: Could not decode JSON line in non-streaming response: {line}")
        
        # Attempt to reconstruct a single coherent JSON response
        # This logic might need refinement based on actual API response format for non-streaming
        final_json_response = {}
        if parsed_data:
            # Example: For OpenAI-like API, you might want the last 'choices' part
            # This is a simplification and might need adjustment for other APIs
            if 'choices' in parsed_data[-1]:
                final_json_response = parsed_data[-1]
            else:
                # Fallback: just return the list of parsed objects
                final_json_response = {"response_parts": parsed_data}

        if not final_json_response:
            # If nothing was parsed, indicate an issue
            raise HTTPException(status_code=500, detail="No valid JSON response received from upstream API for non-streaming request.")

        return JSONResponse(content=final_json_response)

@app.post("/images/generations")
async def create_image(payload: ImageGenerationPayload, request: Request, authenticated: bool = Depends(verify_api_key)):
    """
    Proxies image generation requests to a dedicated image generation API.
    Records usage.
    """
    if not server_status:
        raise HTTPException(
            status_code=503,
            content={"message": "Server is under maintenance. Please try again later."}
        )

    if payload.model not in supported_image_models:
        raise HTTPException(
            status_code=400,
            detail=f"Model '{payload.model}' is not supported for image generation. Supported models are: {', '.join(supported_image_models)}"
        )

    # Record usage for image generation endpoint
    usage_tracker.record_request(request=request, model=payload.model, endpoint="/images/generations")

    api_payload = {
        "model": payload.model,
        "prompt": payload.prompt,
        "size": payload.size,
        "n": payload.number # Often 'n' for number of images in APIs
    }

    target_api_url = get_env_vars().get('new_img') # Get the image API URL from env vars
    if not target_api_url:
        raise HTTPException(status_code=500, detail="Image generation API endpoint (NEW_IMG) not configured.")

    try:
        async with httpx.AsyncClient(timeout=60.0) as client:
            response = await client.post(target_api_url, json=api_payload)

        response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)

        return JSONResponse(content=response.json())

    except httpx.TimeoutException:
        raise HTTPException(status_code=504, detail="Image generation request timed out.")
    except httpx.RequestError as e:
        raise HTTPException(status_code=502, detail=f"Error connecting to image generation service: {e}")
    except httpx.HTTPStatusError as e:
        error_detail = e.response.json().get("detail", f"Image generation failed with status code: {e.response.status_code}")
        raise HTTPException(status_code=e.response.status_code, detail=error_detail)
    except Exception as e:
        print(f"An unexpected error occurred during image generation: {e}")
        raise HTTPException(status_code=500, detail=f"An unexpected error occurred during image generation: {e}")

@app.get("/usage")
async def get_usage_json(days: int = 7):
    """
    Returns the raw usage data as JSON.
    Can specify the number of days for the summary.
    """
    return usage_tracker.get_usage_summary(days)

def generate_usage_html(usage_data: Dict[str, Any], days: int = 7): # Added 'days' parameter here
    """
    Generates an HTML page to display usage statistics.
    Includes tables for model, API endpoint usage, daily usage, and recent requests.
    Also includes placeholders for Chart.js to render graphs.
    """
    # Prepare data for Chart.js
    # Model Usage Chart Data
    model_labels = list(usage_data['model_usage_period'].keys())
    model_counts = list(usage_data['model_usage_period'].values())
    
    # Endpoint Usage Chart Data
    endpoint_labels = list(usage_data['endpoint_usage_period'].keys())
    endpoint_counts = list(usage_data['endpoint_usage_period'].values())

    # Daily Usage Chart Data
    daily_dates = list(usage_data['daily_usage_period'].keys())
    daily_requests = [data['requests'] for data in usage_data['daily_usage_period'].values()]
    daily_unique_ips = [data['unique_ips_count'] for data in usage_data['daily_usage_period'].values()]

    # Format table rows for HTML
    model_usage_all_time_rows = "\n".join([
        f"""
        <tr>
            <td>{model}</td>
            <td>{stats['total_requests']}</td>
            <td>{datetime.datetime.fromisoformat(stats['first_used']).strftime("%Y-%m-%d %H:%M")}</td>
            <td>{datetime.datetime.fromisoformat(stats['last_used']).strftime("%Y-%m-%d %H:%M")}</td>
        </tr>
        """ for model, stats in usage_data['all_time_model_usage'].items()
    ])

    api_usage_all_time_rows = "\n".join([
        f"""
        <tr>
            <td>{endpoint}</td>
            <td>{stats['total_requests']}</td>
            <td>{datetime.datetime.fromisoformat(stats['first_used']).strftime("%Y-%m-%d %H:%M")}</td>
            <td>{datetime.datetime.fromisoformat(stats['last_used']).strftime("%Y-%m-%d %H:%M")}</td>
        </tr>
        """ for endpoint, stats in usage_data['all_time_endpoint_usage'].items()
    ])

    daily_usage_table_rows = "\n".join([
        f"""
        <tr>
            <td>{date}</td>
            <td>{data['requests']}</td>
            <td>{data['unique_ips_count']}</td>
        </tr>
        """ for date, data in usage_data['daily_usage_period'].items()
    ])

    recent_requests_rows = "\n".join([
        f"""
        <tr>
            <td>{datetime.datetime.fromisoformat(req['timestamp']).strftime("%Y-%m-%d %H:%M:%S")}</td>
            <td>{req['model']}</td>
            <td>{req['endpoint']}</td>
            <td>{req['ip_address']}</td>
            <td>{req['user_agent']}</td>
        </tr>
        """ for req in usage_data['recent_requests']
    ])

    html_content = f"""
    <!DOCTYPE html>
    <html lang="en">
    <head>
        <meta charset="UTF-8">
        <meta name="viewport" content="width=device-width, initial-scale=1.0">
        <title>Lokiai AI - Usage Statistics</title>
        <link href="[https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap](https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap)" rel="stylesheet">
        <script src="[https://cdn.jsdelivr.net/npm/chart.js](https://cdn.jsdelivr.net/npm/chart.js)"></script>
        <style>
            :root {{
                --bg-dark: #0f1011;
                --bg-darker: #070708;
                --text-primary: #e6e6e6;
                --text-secondary: #8c8c8c;
                --border-color: #2c2c2c;
                --accent-color: #3a6ee0;
                --accent-hover: #4a7ef0;
                --chart-bg-light: rgba(58, 110, 224, 0.2);
                --chart-border-light: #3a6ee0;
            }}
            body {{
                font-family: 'Inter', sans-serif;
                background-color: var(--bg-dark);
                color: var(--text-primary);
                max-width: 1200px;
                margin: 0 auto;
                padding: 40px 20px;
                line-height: 1.6;
            }}
            .logo {{
                display: flex;
                align-items: center;
                justify-content: center;
                margin-bottom: 30px;
            }}
            .logo h1 {{
                font-weight: 700;
                font-size: 2.8em;
                color: var(--text-primary);
                margin-left: 15px;
            }}
            .logo img {{
                width: 70px;
                height: 70px;
                border-radius: 12px;
                box-shadow: 0 5px 15px rgba(0,0,0,0.2);
            }}
            .container {{
                background-color: var(--bg-darker);
                border-radius: 16px;
                padding: 30px;
                box-shadow: 0 20px 50px rgba(0,0,0,0.4);
                border: 1px solid var(--border-color);
            }}
            h2, h3 {{
                color: var(--text-primary);
                border-bottom: 2px solid var(--border-color);
                padding-bottom: 12px;
                margin-top: 40px;
                margin-bottom: 25px;
                font-weight: 600;
                font-size: 1.8em;
            }}
            .summary-grid {{
                display: grid;
                grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
                gap: 20px;
                margin-bottom: 30px;
            }}
            .summary-card {{
                background-color: var(--bg-dark);
                border-radius: 10px;
                padding: 20px;
                text-align: center;
                border: 1px solid var(--border-color);
                box-shadow: 0 8px 20px rgba(0,0,0,0.2);
                transition: transform 0.2s ease-in-out;
            }}
            .summary-card:hover {{
                transform: translateY(-5px);
            }}
            .summary-card h3 {{
                margin-top: 0;
                font-size: 1.1em;
                color: var(--text-secondary);
                border-bottom: none;
                padding-bottom: 0;
                margin-bottom: 10px;
            }}
            .summary-card p {{
                font-size: 2.2em;
                font-weight: 700;
                color: var(--accent-color);
                margin: 0;
            }}
            table {{
                width: 100%;
                border-collapse: separate;
                border-spacing: 0;
                margin-bottom: 40px;
                background-color: var(--bg-dark);
                border-radius: 10px;
                overflow: hidden;
                box-shadow: 0 8px 20px rgba(0,0,0,0.2);
            }}
            th, td {{
                border: 1px solid var(--border-color);
                padding: 15px;
                text-align: left;
                transition: background-color 0.3s ease;
            }}
            th {{
                background-color: #1a1a1a;
                color: var(--text-primary);
                font-weight: 600;
                text-transform: uppercase;
                font-size: 0.95em;
            }}
            tr:nth-child(even) {{
                background-color: rgba(255,255,255,0.03);
            }}
            tr:hover {{
                background-color: rgba(62,100,255,0.1);
            }}
            .chart-container {{
                background-color: var(--bg-dark);
                border-radius: 10px;
                padding: 20px;
                margin-bottom: 40px;
                border: 1px solid var(--border-color);
                box-shadow: 0 8px 20px rgba(0,0,0,0.2);
                max-height: 400px; /* Limit chart height */
                position: relative; /* For responsive canvas */
            }}
            canvas {{
                max-width: 100% !important;
                height: auto !important;
            }}
            @media (max-width: 768px) {{
                body {{
                    padding: 20px 10px;
                }}
                .container {{
                    padding: 20px;
                }}
                .logo h1 {{
                    font-size: 2em;
                }}
                .summary-card p {{
                    font-size: 1.8em;
                }}
                h2, h3 {{
                    font-size: 1.5em;
                }}
                table {{
                    font-size: 0.85em;
                }}
                th, td {{
                    padding: 10px;
                }}
            }}
        </style>
    </head>
    <body>
        <div class="container">
            <div class="logo">
                <img src="" alt="Lokiai AI Logo">
                <h1>Lokiai AI Usage</h1>
            </div>

            <div class="summary-grid">
                <div class="summary-card">
                    <h3>Total Requests (All Time)</h3>
                    <p>{usage_data['total_requests']}</p>
                </div>
                <div class="summary-card">
                    <h3>Unique IPs (All Time)</h3>
                    <p>{usage_data['unique_ips_total_count']}</p>
                </div>
                <div class="summary-card">
                    <h3>Models Used (Last {days} Days)</h3>
                    <p>{len(usage_data['model_usage_period'])}</p>
                </div>
                <div class="summary-card">
                    <h3>Endpoints Used (Last {days} Days)</h3>
                    <p>{len(usage_data['endpoint_usage_period'])}</p>
                </div>
            </div>

            <h2>Daily Usage (Last {days} Days)</h2>
            <div class="chart-container">
                <canvas id="dailyRequestsChart"></canvas>
            </div>
            <table>
                <thead>
                    <tr>
                        <th>Date</th>
                        <th>Requests</th>
                        <th>Unique IPs</th>
                    </tr>
                </thead>
                <tbody>
                    {daily_usage_table_rows}
                </tbody>
            </table>

            <h2>Model Usage (Last {days} Days)</h2>
            <div class="chart-container">
                <canvas id="modelUsageChart"></canvas>
            </div>
            <h3>Model Usage (All Time Details)</h3>
            <table>
                <thead>
                    <tr>
                        <th>Model</th>
                        <th>Total Requests</th>
                        <th>First Used</th>
                        <th>Last Used</th>
                    </tr>
                </thead>
                <tbody>
                    {model_usage_all_time_rows}
                </tbody>
            </table>

            <h2>API Endpoint Usage (Last {days} Days)</h2>
            <div class="chart-container">
                <canvas id="endpointUsageChart"></canvas>
            </div>
            <h3>API Endpoint Usage (All Time Details)</h3>
            <table>
                <thead>
                    <tr>
                        <th>Endpoint</th>
                        <th>Total Requests</th>
                        <th>First Used</th>
                        <th>Last Used</th>
                    </tr>
                </thead>
                <tbody>
                    {api_usage_all_time_rows}
                </tbody>
            </table>

            <h2>Recent Requests (Last 20)</h2>
            <table>
                <thead>
                    <tr>
                        <th>Timestamp</th>
                        <th>Model</th>
                        <th>Endpoint</th>
                        <th>IP Address</th>
                        <th>User Agent</th>
                    </tr>
                </thead>
                <tbody>
                    {recent_requests_rows}
                </tbody>
            </table>
        </div>

        <script>
            // Chart.js data and rendering logic
            const modelLabels = {json.dumps(model_labels)};
            const modelCounts = {json.dumps(model_counts)};
            
            const endpointLabels = {json.dumps(endpoint_labels)};
            const endpointCounts = {json.dumps(endpoint_counts)};

            const dailyDates = {json.dumps(daily_dates)};
            const dailyRequests = {json.dumps(daily_requests)};
            const dailyUniqueIps = {json.dumps(daily_unique_ips)};

            // Model Usage Chart (Bar Chart)
            new Chart(document.getElementById('modelUsageChart'), {{
                type: 'bar',
                data: {{
                    labels: modelLabels,
                    datasets: [{{
                        label: 'Requests',
                        data: modelCounts,
                        backgroundColor: 'var(--chart-bg-light)',
                        borderColor: 'var(--chart-border-light)',
                        borderWidth: 1,
                        borderRadius: 5,
                    }}]
                }},
                options: {{
                    responsive: true,
                    maintainAspectRatio: false,
                    plugins: {{
                        legend: {{
                            labels: {{
                                color: 'var(--text-primary)'
                            }}
                        }},
                        title: {{
                            display: true,
                            text: 'Model Usage',
                            color: 'var(--text-primary)'
                        }}
                    }},
                    scales: {{
                        x: {{
                            ticks: {{
                                color: 'var(--text-secondary)'
                            }},
                            grid: {{
                                color: 'var(--border-color)'
                            }}
                        }},
                        y: {{
                            beginAtZero: true,
                            ticks: {{
                                color: 'var(--text-secondary)'
                            }},
                            grid: {{
                                color: 'var(--border-color)'
                            }}
                        }}
                    }}
                }}
            }});

            // Endpoint Usage Chart (Doughnut Chart)
            new Chart(document.getElementById('endpointUsageChart'), {{
                type: 'doughnut',
                data: {{
                    labels: endpointLabels,
                    datasets: [{{
                        label: 'Requests',
                        data: endpointCounts,
                        backgroundColor: [
                            '#3a6ee0', '#5b8bff', '#8dc4ff', '#b3d8ff', '#d0e8ff',
                            '#FF6384', '#36A2EB', '#FFCE56', '#4BC0C0', '#9966FF'
                        ],
                        hoverOffset: 4
                    }}]
                }},
                options: {{
                    responsive: true,
                    maintainAspectRatio: false,
                    plugins: {{
                        legend: {{
                            position: 'right',
                            labels: {{
                                color: 'var(--text-primary)'
                            }}
                        }},
                        title: {{
                            display: true,
                            text: 'API Endpoint Usage',
                            color: 'var(--text-primary)'
                        }}
                    }}
                }}
            }});

            // Daily Requests Chart (Line Chart)
            new Chart(document.getElementById('dailyRequestsChart'), {{
                type: 'line',
                data: {{
                    labels: dailyDates,
                    datasets: [
                        {{
                            label: 'Total Requests',
                            data: dailyRequests,
                            borderColor: 'var(--accent-color)',
                            backgroundColor: 'rgba(58, 110, 224, 0.1)',
                            fill: true,
                            tension: 0.3
                        }},
                        {{
                            label: 'Unique IPs',
                            data: dailyUniqueIps,
                            borderColor: '#FFCE56', // A distinct color for unique IPs
                            backgroundColor: 'rgba(255, 206, 86, 0.1)',
                            fill: true,
                            tension: 0.3
                        }}
                    ]
                }},
                options: {{
                    responsive: true,
                    maintainAspectRatio: false,
                    plugins: {{
                        legend: {{
                            labels: {{
                                color: 'var(--text-primary)'
                            }}
                        }},
                        title: {{
                            display: true,
                            text: 'Daily Requests and Unique IPs',
                            color: 'var(--text-primary)'
                        }}
                    }},
                    scales: {{
                        x: {{
                            ticks: {{
                                color: 'var(--text-secondary)'
                            }},
                            grid: {{
                                color: 'var(--border-color)'
                            }}
                        }},
                        y: {{
                            beginAtZero: true,
                            ticks: {{
                                color: 'var(--text-secondary)'
                            }},
                            grid: {{
                                color: 'var(--border-color)'
                            }}
                        }}
                    }}
                }}
            }});
        </script>
    </body>
    </html>
    """
    return html_content
@app.get("/usage/page", response_class=HTMLResponse)
async def usage_page(days: int = 7):
    """
    Serves the usage statistics as an HTML page.
    """
    usage_data = await get_usage_json(days)
    html = generate_usage_html(usage_data, days)
    return HTMLResponse(content=html)

@app.on_event("startup")
async def startup_event():
    """
    Actions to perform on application startup:
    - Load available model IDs.
    - Initialize scraper pool.
    - Check for missing environment variables and issue warnings.
    """
    global available_model_ids
    # Load models from a local models.json file first
    models_data = load_models_data()
    # Extract model IDs from dicts (assuming each dict has a 'id' key)
    available_model_ids = [m['id'] for m in models_data if isinstance(m, dict) and 'id' in m]
    print(f"Loaded {len(available_model_ids)} model IDs from models.json")

    # Extend with hardcoded model lists for various providers
    available_model_ids.extend(list(pollinations_models))
    available_model_ids.extend(list(alternate_models))
    available_model_ids.extend(list(mistral_models))
    available_model_ids.extend(list(claude_3_models))
    available_model_ids.extend(list(gemini_models)) # Add Gemini models explicitly

    # Remove duplicates and store as a set for faster lookups
    available_model_ids = list(set(available_model_ids))
    print(f"Total unique available models after merging: {len(available_model_ids)}")

    # Initialize scraper pool
    for _ in range(MAX_SCRAPERS):
        scraper_pool.append(cloudscraper.create_scraper())
    print(f"Initialized Cloudscraper pool with {MAX_SCRAPERS} instances.")

    # Environment variable check for critical services
    env_vars = get_env_vars()
    missing_vars = []

    if not env_vars['api_keys'] or env_vars['api_keys'] == ['']:
        missing_vars.append('API_KEYS')
    if not env_vars['secret_api_endpoint']:
        missing_vars.append('SECRET_API_ENDPOINT')
    if not env_vars['secret_api_endpoint_2']:
        missing_vars.append('SECRET_API_ENDPOINT_2')
    if not env_vars['secret_api_endpoint_3']:
        missing_vars.append('SECRET_API_ENDPOINT_3')
    if not env_vars['secret_api_endpoint_4'] and any(model in pollinations_models for model in available_model_ids):
        missing_vars.append('SECRET_API_ENDPOINT_4 (Pollinations.ai)')
    if not env_vars['secret_api_endpoint_5'] and any(model in claude_3_models for model in available_model_ids):
        missing_vars.append('SECRET_API_ENDPOINT_5 (Claude 3.x)')
    if not env_vars['secret_api_endpoint_6'] and any(model in gemini_models for model in available_model_ids):
        missing_vars.append('SECRET_API_ENDPOINT_6 (Gemini)')
    if not env_vars['mistral_api'] and any(model in mistral_models for model in available_model_ids):
        missing_vars.append('MISTRAL_API')
    if not env_vars['mistral_key'] and any(model in mistral_models for model in available_model_ids):
        missing_vars.append('MISTRAL_KEY')
    if not env_vars['gemini_key'] and any(model in gemini_models for model in available_model_ids):
        missing_vars.append('GEMINI_KEY')
    if not env_vars['new_img'] and len(supported_image_models) > 0:
        missing_vars.append('NEW_IMG (Image Generation)')
    
    if missing_vars:
        print(f"WARNING: The following critical environment variables are missing or empty: {', '.join(missing_vars)}")
        print("Some server functionality (e.g., specific AI models, image generation) may be limited or unavailable.")
    else:
        print("All critical environment variables appear to be configured.")

    print("Server started successfully!")

@app.on_event("shutdown")
async def shutdown_event():
    """
    Actions to perform on application shutdown:
    - Close HTTPX client.
    - Clear scraper pool.
    - Save usage data to disk.
    """
    client = get_async_client()
    await client.aclose() # Ensure the httpx client connection pool is closed
    scraper_pool.clear() # Clear the scraper pool
    usage_tracker.save_data() # Persist usage data on shutdown
    print("Server shutdown complete!")

@app.get("/health")
async def health_check():
    """
    Provides a health check endpoint, reporting server status and missing critical environment variables.
    """
    env_vars = get_env_vars()
    missing_critical_vars = []

    # Re-check critical environment variables for health status
    if not env_vars['api_keys'] or env_vars['api_keys'] == ['']:
        missing_critical_vars.append('API_KEYS')
    if not env_vars['secret_api_endpoint']:
        missing_critical_vars.append('SECRET_API_ENDPOINT')
    if not env_vars['secret_api_endpoint_2']:
        missing_critical_vars.append('SECRET_API_ENDPOINT_2')
    if not env_vars['secret_api_endpoint_3']:
        missing_critical_vars.append('SECRET_API_ENDPOINT_3')
    # Check for specific service endpoints only if corresponding models are configured/supported
    if not env_vars['secret_api_endpoint_4'] and any(model in pollinations_models for model in available_model_ids):
        missing_critical_vars.append('SECRET_API_ENDPOINT_4 (Pollinations.ai)')
    if not env_vars['secret_api_endpoint_5'] and any(model in claude_3_models for model in available_model_ids):
        missing_critical_vars.append('SECRET_API_ENDPOINT_5 (Claude 3.x)')
    if not env_vars['secret_api_endpoint_6'] and any(model in gemini_models for model in available_model_ids):
        missing_critical_vars.append('SECRET_API_ENDPOINT_6 (Gemini)')
    if not env_vars['mistral_api'] and any(model in mistral_models for model in available_model_ids):
        missing_critical_vars.append('MISTRAL_API')
    if not env_vars['mistral_key'] and any(model in mistral_models for model in available_model_ids):
        missing_critical_vars.append('MISTRAL_KEY')
    if not env_vars['gemini_key'] and any(model in gemini_models for model in available_model_ids):
        missing_critical_vars.append('GEMINI_KEY')
    if not env_vars['new_img'] and len(supported_image_models) > 0:
        missing_critical_vars.append('NEW_IMG (Image Generation)')

    health_status = {
        "status": "healthy" if not missing_critical_vars else "unhealthy",
        "missing_env_vars": missing_critical_vars,
        "server_status": server_status, # Reports global server status flag
        "message": "Everything's lit! πŸš€" if not missing_critical_vars else "Uh oh, some env vars are missing. 😬"
    }
    return JSONResponse(content=health_status)

if __name__ == "__main__":
    import uvicorn
    # When running directly, ensure startup_event is called to load models and check env vars
    # uvicorn handles startup/shutdown events automatically when run with `uvicorn.run()`
    uvicorn.run(app, host="0.0.0.0", port=7860)