Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -1,395 +1,1447 @@
|
|
1 |
import os
|
2 |
-
import json
|
3 |
-
import datetime
|
4 |
-
import asyncio
|
5 |
import re
|
6 |
-
from functools import lru_cache
|
7 |
-
from pathlib import Path
|
8 |
-
from typing import List, Dict, Any, Tuple, Optional
|
9 |
-
|
10 |
-
import httpx
|
11 |
-
import uvicorn
|
12 |
from dotenv import load_dotenv
|
13 |
-
from fastapi import FastAPI, HTTPException, Request, Depends, Security, Query
|
14 |
-
from fastapi.responses import HTMLResponse, JSONResponse,
|
15 |
from fastapi.security import APIKeyHeader
|
16 |
-
from
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
from starlette.middleware.cors import CORSMiddleware
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
try:
|
24 |
-
import cloudscraper
|
25 |
-
except ImportError:
|
26 |
-
cloudscraper = None
|
27 |
|
28 |
-
|
29 |
|
30 |
-
# --- Initial Setup ---
|
31 |
load_dotenv()
|
32 |
-
# Use uvloop for better performance if available
|
33 |
-
try:
|
34 |
-
import uvloop
|
35 |
-
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
|
36 |
-
except ImportError:
|
37 |
-
pass
|
38 |
-
|
39 |
-
# --- Configuration Management using Pydantic ---
|
40 |
-
class Settings(BaseSettings):
|
41 |
-
"""Manages all application settings and environment variables in one place."""
|
42 |
-
api_keys: List[str] = Field(..., env="API_KEYS")
|
43 |
-
|
44 |
-
# Endpoints for various model providers
|
45 |
-
secret_api_endpoint: str = Field(..., env="SECRET_API_ENDPOINT")
|
46 |
-
secret_api_endpoint_2: str = Field(..., env="SECRET_API_ENDPOINT_2")
|
47 |
-
secret_api_endpoint_3: str = Field(..., env="SECRET_API_ENDPOINT_3")
|
48 |
-
secret_api_endpoint_4: str = "https://text.pollinations.ai/openai"
|
49 |
-
secret_api_endpoint_5: str = Field(..., env="SECRET_API_ENDPOINT_5")
|
50 |
-
secret_api_endpoint_6: str = Field(..., env="SECRET_API_ENDPOINT_6")
|
51 |
-
|
52 |
-
# Specific provider keys and APIs
|
53 |
-
mistral_api: str = "https://api.mistral.ai"
|
54 |
-
mistral_key: str = Field(..., env="MISTRAL_KEY")
|
55 |
-
gemini_key: str = Field(..., env="GEMINI_KEY")
|
56 |
-
new_img_api: str = Field(..., env="NEW_IMG")
|
57 |
-
|
58 |
-
endpoint_origin: Optional[str] = Field(None, env="ENDPOINT_ORIGIN")
|
59 |
-
header_url: Optional[str] = Field(None, env="HEADER_URL")
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
model: str
|
72 |
-
messages:
|
73 |
stream: bool = False
|
74 |
|
75 |
class ImageGenerationPayload(BaseModel):
|
|
|
76 |
model: str
|
77 |
prompt: str
|
78 |
-
size:
|
79 |
-
number: int
|
80 |
-
|
81 |
-
# --- Global Objects & State ---
|
82 |
-
app = FastAPI(
|
83 |
-
title="LokiAI API",
|
84 |
-
version="2.5.0",
|
85 |
-
description="A robust and scalable API proxy for various AI models, now fully rewritten.",
|
86 |
-
)
|
87 |
-
usage_tracker = UsageTracker()
|
88 |
-
api_key_header = APIKeyHeader(name="Authorization", auto_error=False)
|
89 |
-
server_status = {"online": True}
|
90 |
-
|
91 |
-
# --- Model & API Configuration ---
|
92 |
-
MODEL_SETS = {
|
93 |
-
"mistral": {"mistral-large-latest", "codestral-latest", "mistral-small-latest"},
|
94 |
-
"pollinations": {"openai", "gemini", "phi", "llama"},
|
95 |
-
"alternate": {"o1", "grok-3", "sonar-pro"},
|
96 |
-
"claude": {"claude-3-7-sonnet", "claude 3.5 sonnet", "o3-mini-medium"},
|
97 |
-
"gemini": {"gemini-1.5-pro", "gemini-1.5-flash", "gemini-2.0-flash"},
|
98 |
-
"image": {"Flux Pro Ultra", "dall-e-3", "stable-diffusion-3-large-turbo"},
|
99 |
-
}
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
if model_name in MODEL_SETS["mistral"]:
|
104 |
-
return settings.mistral_api, {"Authorization": f"Bearer {settings.mistral_key}"}, "/v1/chat/completions"
|
105 |
-
if model_name in MODEL_SETS["gemini"]:
|
106 |
-
return settings.secret_api_endpoint_6, {"Authorization": f"Bearer {settings.gemini_key}"}, "/chat/completions"
|
107 |
-
if model_name in MODEL_SETS["pollinations"]:
|
108 |
-
return settings.secret_api_endpoint_4, {}, "/v1/chat/completions"
|
109 |
-
if model_name in MODEL_SETS["claude"]:
|
110 |
-
return settings.secret_api_endpoint_5, {}, "/v1/chat/completions"
|
111 |
-
if model_name in MODEL_SETS["alternate"]:
|
112 |
-
return settings.secret_api_endpoint_2, {}, "/v1/chat/completions"
|
113 |
-
if model_name in MODEL_SETS["image"]:
|
114 |
-
return settings.new_img_api, {}, ""
|
115 |
-
|
116 |
-
# Default case
|
117 |
-
headers = {
|
118 |
-
"Origin": settings.header_url, "Referer": settings.header_url
|
119 |
-
} if settings.header_url else {}
|
120 |
-
return settings.secret_api_endpoint, headers, "/v1/chat/completions"
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
"""
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
if
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
# --- API Routers ---
|
143 |
-
chat_router = APIRouter(tags=["AI Models"])
|
144 |
-
image_router = APIRouter(tags=["AI Models"])
|
145 |
-
usage_router = APIRouter(tags=["Server Administration"])
|
146 |
-
utility_router = APIRouter(tags=["Utilities & Pages"])
|
147 |
-
|
148 |
-
# --- Chat Completions Router ---
|
149 |
-
@chat_router.post("/chat/completions")
|
150 |
-
async def chat_completions(
|
151 |
-
payload: ChatPayload,
|
152 |
request: Request,
|
153 |
-
api_key: str =
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
async with client.stream("POST", f"{endpoint}{path}", json=payload.dict(), headers=headers) as response:
|
166 |
-
response.raise_for_status()
|
167 |
-
async for chunk in response.aiter_bytes():
|
168 |
-
yield chunk
|
169 |
-
except httpx.HTTPStatusError as e:
|
170 |
-
print(f"Upstream error: {e.response.status_code} - {e.response.text}")
|
171 |
-
yield json.dumps({"error": {"code": 502, "message": "Bad Gateway: Upstream service error."}}).encode()
|
172 |
-
except Exception as e:
|
173 |
-
print(f"Streaming error: {e}")
|
174 |
-
yield json.dumps({"error": {"code": 500, "message": "An internal error occurred."}}).encode()
|
175 |
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
api_key: str = Depends(get_api_key),
|
184 |
-
client: httpx.AsyncClient = Depends(get_http_client)
|
185 |
-
):
|
186 |
-
if not server_status["online"]:
|
187 |
-
raise HTTPException(status_code=HTTP_503_SERVICE_UNAVAILABLE, detail="Server under maintenance.")
|
188 |
-
|
189 |
-
if payload.model not in MODEL_SETS["image"]:
|
190 |
-
raise HTTPException(status_code=400, detail=f"Image model '{payload.model}' not supported.")
|
191 |
-
|
192 |
-
settings = get_settings()
|
193 |
-
usage_tracker.record_request(request, payload.model, "/images/generations")
|
194 |
-
endpoint, headers, _ = get_api_details(payload.model, settings)
|
195 |
|
196 |
-
|
197 |
-
response = await client.post(endpoint, json=payload.dict(), headers=headers)
|
198 |
-
response.raise_for_status()
|
199 |
-
return JSONResponse(content=response.json())
|
200 |
-
except httpx.HTTPStatusError as e:
|
201 |
-
raise HTTPException(status_code=e.response.status_code, detail=e.response.json().get("detail", "Upstream error"))
|
202 |
-
except httpx.RequestError as e:
|
203 |
-
raise HTTPException(status_code=502, detail=f"Failed to connect to image service: {e}")
|
204 |
-
|
205 |
-
# --- Usage & Health Router ---
|
206 |
-
@usage_router.get("/usage", response_class=HTMLResponse)
|
207 |
-
async def get_usage_dashboard(days: int = Query(7, ge=1, le=30)):
|
208 |
-
summary = usage_tracker.get_usage_summary(days=days)
|
209 |
-
# The generate_usage_html function from the previous version can be used here directly
|
210 |
-
# It has been moved to a separate file or helper for cleanliness in a real app
|
211 |
-
# For this example, it's defined below for completeness.
|
212 |
-
from usage_dashboard_generator import generate_usage_html
|
213 |
-
return HTMLResponse(content=generate_usage_html(summary))
|
214 |
-
|
215 |
-
@usage_router.get("/health")
|
216 |
-
async def health_check():
|
217 |
-
return {"status": "healthy" if server_status["online"] else "unhealthy", "version": app.version}
|
218 |
|
219 |
-
@
|
220 |
-
|
|
|
221 |
try:
|
222 |
-
|
|
|
223 |
return json.load(f)
|
224 |
-
except
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
-
# --- Utility & Pages Router ---
|
228 |
@lru_cache(maxsize=10)
|
229 |
-
def
|
|
|
230 |
try:
|
231 |
-
with open(
|
232 |
return file.read()
|
233 |
except FileNotFoundError:
|
234 |
return None
|
235 |
|
236 |
-
|
237 |
-
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
-
@utility_router.get("/playground", response_class=HTMLResponse)
|
241 |
-
async def playground_page():
|
242 |
-
return HTMLResponse(content=read_static_file("playground.html") or "<h1>Not Found</h1>")
|
243 |
-
|
244 |
-
@utility_router.get("/image-playground", response_class=HTMLResponse)
|
245 |
-
async def image_playground_page():
|
246 |
-
return HTMLResponse(content=read_static_file("image-playground.html") or "<h1>Not Found</h1>")
|
247 |
-
|
248 |
-
@utility_router.get("/scraper", response_class=PlainTextResponse)
|
249 |
-
async def scrape_url(url: str = Query(..., description="URL to scrape")):
|
250 |
-
if not cloudscraper:
|
251 |
-
raise HTTPException(status_code=501, detail="Scraper library not installed.")
|
252 |
try:
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
|
|
|
|
|
|
|
|
259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
)
|
|
|
|
|
|
|
|
|
270 |
|
271 |
-
# Include all the organized routers
|
272 |
-
app.include_router(chat_router, prefix="/api/v1")
|
273 |
-
app.include_router(chat_router) # For legacy /chat/completions
|
274 |
-
app.include_router(image_router, prefix="/api/v1")
|
275 |
-
app.include_router(image_router) # For legacy /images/generations
|
276 |
-
app.include_router(usage_router)
|
277 |
-
app.include_router(utility_router)
|
278 |
|
279 |
-
@app.
|
280 |
-
async def
|
281 |
-
|
|
|
|
|
|
|
282 |
try:
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
except Exception as e:
|
285 |
-
print(f"
|
286 |
-
|
287 |
-
get_http_client()
|
288 |
-
print("--- LokiAI Server Started ---")
|
289 |
-
print(f"Version: {app.version}")
|
290 |
-
print("Usage tracking is active and will save data periodically.")
|
291 |
|
292 |
-
@app.
|
293 |
-
async def
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
|
|
298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
-
|
315 |
-
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
<td>{req['model']}</td>
|
318 |
<td>{req['endpoint']}</td>
|
319 |
<td>{req['ip_address']}</td>
|
320 |
-
|
|
|
|
|
321 |
])
|
322 |
|
323 |
-
|
324 |
<!DOCTYPE html>
|
325 |
<html lang="en">
|
326 |
<head>
|
327 |
<meta charset="UTF-8">
|
328 |
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
329 |
-
<title>
|
330 |
-
<
|
331 |
-
<
|
332 |
<style>
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
</style>
|
348 |
</head>
|
349 |
<body>
|
350 |
<div class="container">
|
351 |
-
<div class="
|
352 |
-
|
353 |
-
<
|
354 |
-
<div class="stat-card"><h3>Unique IPs (All Time)</h3><p class="value">{usage_data['unique_ip_count']}</p></div>
|
355 |
-
<div class="stat-card"><h3>Models Used (Last 7 Days)</h3><p class="value">{len(usage_data['model_usage'])}</p></div>
|
356 |
</div>
|
357 |
-
|
358 |
-
|
359 |
-
<div class="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
</div>
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
</div>
|
|
|
369 |
<script>
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
}}
|
376 |
}});
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
options: chartOptions('#E0E0E0', '#2A3045')
|
381 |
-
}});
|
382 |
-
new Chart(document.getElementById('modelUsageChart'), {{
|
383 |
type: 'doughnut',
|
384 |
-
data: {{
|
385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
}});
|
387 |
</script>
|
388 |
</body>
|
389 |
</html>
|
390 |
"""
|
391 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
|
393 |
if __name__ == "__main__":
|
|
|
|
|
|
|
394 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
395 |
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from dotenv import load_dotenv
|
4 |
+
from fastapi import FastAPI, HTTPException, Request, Depends, Security, Query
|
5 |
+
from fastapi.responses import StreamingResponse, HTMLResponse, JSONResponse, FileResponse, PlainTextResponse
|
6 |
from fastapi.security import APIKeyHeader
|
7 |
+
from pydantic import BaseModel
|
8 |
+
import httpx
|
9 |
+
from functools import lru_cache
|
10 |
+
from pathlib import Path
|
11 |
+
import json
|
12 |
+
import datetime
|
13 |
+
import time
|
14 |
+
import threading
|
15 |
+
from typing import Optional, Dict, List, Any, Generator
|
16 |
+
import asyncio
|
17 |
+
from starlette.status import HTTP_403_FORBIDDEN
|
18 |
+
import cloudscraper
|
19 |
+
from concurrent.futures import ThreadPoolExecutor
|
20 |
+
import uvloop
|
21 |
+
from fastapi.middleware.gzip import GZipMiddleware
|
22 |
from starlette.middleware.cors import CORSMiddleware
|
23 |
+
import contextlib
|
24 |
+
import requests
|
25 |
|
26 |
+
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
executor = ThreadPoolExecutor(max_workers=16)
|
29 |
|
|
|
30 |
load_dotenv()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
api_key_header = APIKeyHeader(name="Authorization", auto_error=False)
|
33 |
+
|
34 |
+
from usage_tracker import UsageTracker
|
35 |
+
usage_tracker = UsageTracker()
|
36 |
+
|
37 |
+
app = FastAPI()
|
38 |
+
|
39 |
+
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
40 |
+
app.add_middleware(
|
41 |
+
CORSMiddleware,
|
42 |
+
allow_origins=["*"],
|
43 |
+
allow_credentials=True,
|
44 |
+
allow_methods=["*"],
|
45 |
+
allow_headers=["*"],
|
46 |
+
)
|
47 |
+
|
48 |
+
@lru_cache(maxsize=1)
|
49 |
+
def get_env_vars():
|
50 |
+
"""
|
51 |
+
Loads and caches environment variables. This function is memoized
|
52 |
+
to avoid re-reading .env file on every call, improving performance.
|
53 |
+
"""
|
54 |
+
return {
|
55 |
+
'api_keys': os.getenv('API_KEYS', '').split(','),
|
56 |
+
'secret_api_endpoint': os.getenv('SECRET_API_ENDPOINT'),
|
57 |
+
'secret_api_endpoint_2': os.getenv('SECRET_API_ENDPOINT_2'),
|
58 |
+
'secret_api_endpoint_3': os.getenv('SECRET_API_ENDPOINT_3'),
|
59 |
+
'secret_api_endpoint_4': os.getenv('SECRET_API_ENDPOINT_4', "https://text.pollinations.ai/openai"),
|
60 |
+
'secret_api_endpoint_5': os.getenv('SECRET_API_ENDPOINT_5'),
|
61 |
+
'secret_api_endpoint_6': os.getenv('SECRET_API_ENDPOINT_6'), # New endpoint for Gemini
|
62 |
+
'mistral_api': os.getenv('MISTRAL_API', "https://api.mistral.ai"),
|
63 |
+
'mistral_key': os.getenv('MISTRAL_KEY'),
|
64 |
+
'gemini_key': os.getenv('GEMINI_KEY'), # Gemini API Key
|
65 |
+
'endpoint_origin': os.getenv('ENDPOINT_ORIGIN'),
|
66 |
+
'new_img': os.getenv('NEW_IMG') # For image generation API
|
67 |
+
}
|
68 |
+
|
69 |
+
# Define sets of models for different API endpoints for easier routing
|
70 |
+
mistral_models = {
|
71 |
+
"mistral-large-latest", "pixtral-large-latest", "mistral-moderation-latest",
|
72 |
+
"ministral-3b-latest", "ministral-8b-latest", "open-mistral-nemo",
|
73 |
+
"mistral-small-latest", "mistral-saba-latest", "codestral-latest"
|
74 |
+
}
|
75 |
|
76 |
+
pollinations_models = {
|
77 |
+
"openai", "openai-large", "openai-fast", "openai-xlarge", "openai-reasoning",
|
78 |
+
"qwen-coder", "llama", "mistral", "searchgpt", "deepseek", "claude-hybridspace",
|
79 |
+
"deepseek-r1", "deepseek-reasoner", "llamalight", "gemini", "gemini-thinking",
|
80 |
+
"hormoz", "phi", "phi-mini", "openai-audio", "llama-scaleway"
|
81 |
+
}
|
82 |
+
alternate_models = {
|
83 |
+
"o1", "llama-4-scout", "o4-mini", "sonar", "sonar-pro", "sonar-reasoning",
|
84 |
+
"sonar-reasoning-pro", "grok-3", "grok-3-fast", "r1-1776", "o3"
|
85 |
+
}
|
86 |
+
|
87 |
+
claude_3_models = {
|
88 |
+
"claude-3-7-sonnet", "claude-3-7-sonnet-thinking", "claude 3.5 haiku",
|
89 |
+
"claude 3.5 sonnet", "claude 3.5 haiku", "o3-mini-medium", "o3-mini-high",
|
90 |
+
"grok-3", "grok-3-thinking", "grok 2"
|
91 |
+
}
|
92 |
+
|
93 |
+
gemini_models = {
|
94 |
+
"gemini-1.5-pro", "gemini-1.5-flash", "gemini-2.0-flash-lite-preview",
|
95 |
+
"gemini-2.0-flash", "gemini-2.0-flash-thinking", # aka Reasoning
|
96 |
+
"gemini-2.0-flash-preview-image-generation", "gemini-2.5-flash",
|
97 |
+
"gemini-2.5-pro-exp", "gemini-exp-1206"
|
98 |
+
}
|
99 |
|
100 |
+
supported_image_models = {
|
101 |
+
"Flux Pro Ultra", "grok-2-aurora", "Flux Pro", "Flux Pro Ultra Raw",
|
102 |
+
"Flux Dev", "Flux Schnell", "stable-diffusion-3-large-turbo",
|
103 |
+
"Flux Realism", "stable-diffusion-ultra", "dall-e-3", "sdxl-lightning-4step"
|
104 |
+
}
|
105 |
+
|
106 |
+
class Payload(BaseModel):
|
107 |
+
"""Pydantic model for chat completion requests."""
|
108 |
model: str
|
109 |
+
messages: list
|
110 |
stream: bool = False
|
111 |
|
112 |
class ImageGenerationPayload(BaseModel):
|
113 |
+
"""Pydantic model for image generation requests."""
|
114 |
model: str
|
115 |
prompt: str
|
116 |
+
size: str = "1024x1024" # Default size, assuming models support it
|
117 |
+
number: int = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
server_status = True # Global flag for server maintenance status
|
120 |
+
available_model_ids: List[str] = [] # List of all available model IDs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
@lru_cache(maxsize=1)
|
123 |
+
def get_async_client():
|
124 |
+
"""Returns a memoized httpx.AsyncClient instance for making async HTTP requests."""
|
125 |
+
return httpx.AsyncClient(
|
126 |
+
timeout=60.0,
|
127 |
+
limits=httpx.Limits(max_keepalive_connections=50, max_connections=200)
|
128 |
+
)
|
129 |
|
130 |
+
scraper_pool = []
|
131 |
+
MAX_SCRAPERS = 20
|
132 |
+
|
133 |
+
def get_scraper():
|
134 |
+
"""Retrieves a cloudscraper instance from a pool for web scraping."""
|
135 |
+
if not scraper_pool:
|
136 |
+
# Initialize the pool if it's empty (should be done at startup)
|
137 |
+
for _ in range(MAX_SCRAPERS):
|
138 |
+
scraper_pool.append(cloudscraper.create_scraper())
|
139 |
+
# Simple round-robin selection from the pool
|
140 |
+
return scraper_pool[int(time.time() * 1000) % MAX_SCRAPERS]
|
141 |
+
|
142 |
+
async def verify_api_key(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
request: Request,
|
144 |
+
api_key: str = Security(api_key_header)
|
145 |
+
) -> bool:
|
146 |
+
"""
|
147 |
+
Verifies the API key provided in the Authorization header.
|
148 |
+
Allows access without API key if the request comes from specific Hugging Face spaces.
|
149 |
+
"""
|
150 |
+
referer = request.headers.get("referer", "")
|
151 |
+
if referer.startswith(("https://parthsadaria-lokiai.hf.space/playground",
|
152 |
+
"https://parthsadaria-lokiai.hf.space/image-playground")):
|
153 |
+
return True
|
154 |
|
155 |
+
if not api_key:
|
156 |
+
raise HTTPException(
|
157 |
+
status_code=HTTP_403_FORBIDDEN,
|
158 |
+
detail="No API key provided"
|
159 |
+
)
|
160 |
|
161 |
+
if api_key.startswith('Bearer '):
|
162 |
+
api_key = api_key[7:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
+
valid_api_keys = get_env_vars().get('api_keys', [])
|
165 |
+
if not valid_api_keys or valid_api_keys == ['']:
|
166 |
+
raise HTTPException(
|
167 |
+
status_code=HTTP_403_FORBIDDEN,
|
168 |
+
detail="API keys not configured on server"
|
169 |
+
)
|
170 |
|
171 |
+
if api_key not in set(valid_api_keys):
|
172 |
+
raise HTTPException(
|
173 |
+
status_code=HTTP_403_FORBIDDEN,
|
174 |
+
detail="Invalid API key"
|
175 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
+
@lru_cache(maxsize=1)
|
180 |
+
def load_models_data():
|
181 |
+
"""Loads model data from 'models.json' and caches it."""
|
182 |
try:
|
183 |
+
file_path = Path(__file__).parent / 'models.json'
|
184 |
+
with open(file_path, 'r') as f:
|
185 |
return json.load(f)
|
186 |
+
except (FileNotFoundError, json.JSONDecodeError) as e:
|
187 |
+
print(f"Error loading models.json: {str(e)}")
|
188 |
+
return []
|
189 |
+
|
190 |
+
@app.get("/api/v1/models")
|
191 |
+
@app.get("/models")
|
192 |
+
async def get_models():
|
193 |
+
"""Returns the list of available models."""
|
194 |
+
models_data = load_models_data()
|
195 |
+
if not models_data:
|
196 |
+
raise HTTPException(status_code=500, detail="Error loading available models")
|
197 |
+
return models_data
|
198 |
+
|
199 |
+
async def generate_search_async(query: str, systemprompt: Optional[str] = None, stream: bool = True):
|
200 |
+
"""
|
201 |
+
Asynchronously generates a response using a search-based model.
|
202 |
+
Streams results if `stream` is True.
|
203 |
+
"""
|
204 |
+
queue = asyncio.Queue()
|
205 |
+
|
206 |
+
async def _fetch_search_data():
|
207 |
+
"""Internal helper to fetch data from the search API and put into queue."""
|
208 |
+
try:
|
209 |
+
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"}
|
210 |
+
system_message = systemprompt or "Be Helpful and Friendly"
|
211 |
+
prompt = [{"role": "user", "content": query}]
|
212 |
+
prompt.insert(0, {"content": system_message, "role": "system"})
|
213 |
+
payload = {
|
214 |
+
"is_vscode_extension": True,
|
215 |
+
"message_history": prompt,
|
216 |
+
"requested_model": "searchgpt",
|
217 |
+
"user_input": prompt[-1]["content"],
|
218 |
+
}
|
219 |
+
secret_api_endpoint_3 = get_env_vars()['secret_api_endpoint_3']
|
220 |
+
if not secret_api_endpoint_3:
|
221 |
+
await queue.put({"error": "Search API endpoint not configured"})
|
222 |
+
return
|
223 |
+
|
224 |
+
async with httpx.AsyncClient(timeout=30.0) as client:
|
225 |
+
async with client.stream("POST", secret_api_endpoint_3, json=payload, headers=headers) as response:
|
226 |
+
if response.status_code != 200:
|
227 |
+
error_detail = await response.text()
|
228 |
+
await queue.put({"error": f"Search API returned status code {response.status_code}: {error_detail}"})
|
229 |
+
return
|
230 |
+
|
231 |
+
buffer = ""
|
232 |
+
async for line in response.aiter_lines():
|
233 |
+
if line.startswith("data: "):
|
234 |
+
try:
|
235 |
+
json_data = json.loads(line[6:])
|
236 |
+
content = json_data.get("choices", [{}])[0].get("delta", {}).get("content", "")
|
237 |
+
if content.strip():
|
238 |
+
cleaned_response = {
|
239 |
+
"created": json_data.get("created"),
|
240 |
+
"id": json_data.get("id"),
|
241 |
+
"model": "searchgpt",
|
242 |
+
"object": "chat.completion",
|
243 |
+
"choices": [
|
244 |
+
{
|
245 |
+
"message": {
|
246 |
+
"content": content
|
247 |
+
}
|
248 |
+
}
|
249 |
+
]
|
250 |
+
}
|
251 |
+
await queue.put({"data": f"data: {json.dumps(cleaned_response)}\n\n", "text": content})
|
252 |
+
except json.JSONDecodeError:
|
253 |
+
# If line is not valid JSON, treat it as raw text and pass through if it's the end of stream
|
254 |
+
if line.strip() == "[DONE]":
|
255 |
+
continue # This is usually handled by the aiter_lines loop finishing
|
256 |
+
print(f"Warning: Could not decode JSON from search API stream: {line}")
|
257 |
+
await queue.put({"error": f"Invalid JSON from search API: {line}"})
|
258 |
+
break # Stop processing on bad JSON
|
259 |
+
await queue.put(None) # Signal end of stream
|
260 |
+
except Exception as e:
|
261 |
+
print(f"Error in _fetch_search_data: {e}")
|
262 |
+
await queue.put({"error": str(e)})
|
263 |
+
await queue.put(None)
|
264 |
+
|
265 |
+
asyncio.create_task(_fetch_search_data())
|
266 |
+
return queue
|
267 |
|
|
|
268 |
@lru_cache(maxsize=10)
|
269 |
+
def read_html_file(file_path):
|
270 |
+
"""Reads content of an HTML file and caches it."""
|
271 |
try:
|
272 |
+
with open(file_path, "r") as file:
|
273 |
return file.read()
|
274 |
except FileNotFoundError:
|
275 |
return None
|
276 |
|
277 |
+
# Static file routes for basic web assets
|
278 |
+
@app.get("/favicon.ico")
|
279 |
+
async def favicon():
|
280 |
+
favicon_path = Path(__file__).parent / "favicon.ico"
|
281 |
+
return FileResponse(favicon_path, media_type="image/x-icon")
|
282 |
+
|
283 |
+
@app.get("/banner.jpg")
|
284 |
+
async def banner():
|
285 |
+
banner_path = Path(__file__).parent / "banner.jpg"
|
286 |
+
return FileResponse(banner_path, media_type="image/jpeg")
|
287 |
+
|
288 |
+
@app.get("/ping")
|
289 |
+
async def ping():
|
290 |
+
"""Simple health check endpoint."""
|
291 |
+
return {"message": "pong", "response_time": "0.000000 seconds"}
|
292 |
+
|
293 |
+
@app.get("/", response_class=HTMLResponse)
|
294 |
+
async def root():
|
295 |
+
"""Serves the main index.html file."""
|
296 |
+
html_content = read_html_file("index.html")
|
297 |
+
if html_content is None:
|
298 |
+
raise HTTPException(status_code=404, detail="index.html not found")
|
299 |
+
return HTMLResponse(content=html_content)
|
300 |
+
|
301 |
+
@app.get("/script.js", response_class=HTMLResponse)
|
302 |
+
async def script():
|
303 |
+
"""Serves script.js."""
|
304 |
+
html_content = read_html_file("script.js")
|
305 |
+
if html_content is None:
|
306 |
+
raise HTTPException(status_code=404, detail="script.js not found")
|
307 |
+
return HTMLResponse(content=html_content)
|
308 |
+
|
309 |
+
@app.get("/style.css", response_class=HTMLResponse)
|
310 |
+
async def style():
|
311 |
+
"""Serves style.css."""
|
312 |
+
html_content = read_html_file("style.css")
|
313 |
+
if html_content is None:
|
314 |
+
raise HTTPException(status_code=404, detail="style.css not found")
|
315 |
+
return HTMLResponse(content=html_content)
|
316 |
+
|
317 |
+
@app.get("/dynamo", response_class=HTMLResponse)
|
318 |
+
async def dynamic_ai_page(request: Request):
|
319 |
+
"""
|
320 |
+
Generates a dynamic HTML page using an AI model based on user-agent and IP.
|
321 |
+
Note: The hardcoded API endpoint and bearer token should ideally be managed
|
322 |
+
more securely, perhaps via environment variables and proper authentication.
|
323 |
+
"""
|
324 |
+
user_agent = request.headers.get('user-agent', 'Unknown User')
|
325 |
+
client_ip = request.client.host if request.client else "Unknown IP"
|
326 |
+
location = f"IP: {client_ip}"
|
327 |
+
|
328 |
+
prompt = f"""
|
329 |
+
Generate a dynamic HTML page for a user with the following details: with name "LOKI.AI"
|
330 |
+
- User-Agent: {user_agent}
|
331 |
+
- Location: {location}
|
332 |
+
- Style: Cyberpunk, minimalist, or retro
|
333 |
+
|
334 |
+
Make sure the HTML is clean and includes a heading, also have cool animations a motivational message, and a cool background.
|
335 |
+
Wrap the generated HTML in triple backticks (```).
|
336 |
+
"""
|
337 |
+
|
338 |
+
payload = {
|
339 |
+
"model": "mistral-small-latest",
|
340 |
+
"messages": [{"role": "user", "content": prompt}]
|
341 |
+
}
|
342 |
+
|
343 |
+
# Using the local /chat/completions endpoint for internal model call
|
344 |
+
# This assumes the current server can proxy to Mistral.
|
345 |
+
# For production, consider direct calls if not proxying is needed.
|
346 |
+
headers = {
|
347 |
+
"Authorization": "Bearer playground" # Use a dedicated internal token if available
|
348 |
+
}
|
349 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
try:
|
351 |
+
# Use httpx.AsyncClient for making an async request
|
352 |
+
async with httpx.AsyncClient() as client:
|
353 |
+
response = await client.post(
|
354 |
+
f"http://localhost:7860/chat/completions", # Call self or internal API
|
355 |
+
json=payload,
|
356 |
+
headers=headers,
|
357 |
+
timeout=30.0
|
358 |
+
)
|
359 |
+
response.raise_for_status() # Raise an exception for bad status codes
|
360 |
+
data = response.json()
|
361 |
|
362 |
+
html_content = None
|
363 |
+
if data and 'choices' in data and len(data['choices']) > 0:
|
364 |
+
message_content = data['choices'][0].get('message', {}).get('content', '')
|
365 |
+
# Extract content within triple backticks
|
366 |
+
match = re.search(r"```(?:html)?(.*?)```", message_content, re.DOTALL)
|
367 |
+
if match:
|
368 |
+
html_content = match.group(1).strip()
|
369 |
+
else:
|
370 |
+
# Fallback: if no backticks, assume the whole content is HTML
|
371 |
+
html_content = message_content.strip()
|
372 |
|
373 |
+
if not html_content:
|
374 |
+
raise HTTPException(status_code=500, detail="Failed to generate HTML content from AI.")
|
375 |
+
|
376 |
+
return HTMLResponse(content=html_content)
|
377 |
+
except httpx.RequestError as e:
|
378 |
+
print(f"HTTPX Request Error in /dynamo: {e}")
|
379 |
+
raise HTTPException(status_code=500, detail=f"Failed to connect to internal AI service: {e}")
|
380 |
+
except httpx.HTTPStatusError as e:
|
381 |
+
print(f"HTTPX Status Error in /dynamo: {e.response.status_code} - {e.response.text}")
|
382 |
+
raise HTTPException(status_code=e.response.status_code, detail=f"Internal AI service responded with error: {e.response.text}")
|
383 |
+
except Exception as e:
|
384 |
+
print(f"An unexpected error occurred in /dynamo: {e}")
|
385 |
+
raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {e}")
|
386 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
387 |
|
388 |
+
@app.get("/scraper", response_class=PlainTextResponse)
|
389 |
+
async def scrape_site(url: str = Query(..., description="URL to scrape")):
|
390 |
+
"""
|
391 |
+
Scrapes the content of a given URL using cloudscraper.
|
392 |
+
Uses await in front of get_scraper().get() for async execution.
|
393 |
+
"""
|
394 |
try:
|
395 |
+
# get_scraper() returns a synchronous scraper object, but we are running
|
396 |
+
# it in an async endpoint. For CPU-bound tasks like this, it's better
|
397 |
+
# to offload to a thread pool to not block the event loop.
|
398 |
+
# However, cloudscraper's get method is typically synchronous.
|
399 |
+
# If cloudscraper were truly async, we'd use await.
|
400 |
+
# For now, running in executor to prevent blocking.
|
401 |
+
loop = asyncio.get_running_loop()
|
402 |
+
response_text = await loop.run_in_executor(
|
403 |
+
executor,
|
404 |
+
lambda: get_scraper().get(url).text
|
405 |
+
)
|
406 |
+
|
407 |
+
if response_text and len(response_text.strip()) > 0:
|
408 |
+
return PlainTextResponse(response_text)
|
409 |
+
else:
|
410 |
+
raise HTTPException(status_code=500, detail="Scraping returned empty content.")
|
411 |
except Exception as e:
|
412 |
+
print(f"Cloudscraper failed: {e}")
|
413 |
+
raise HTTPException(status_code=500, detail=f"Cloudscraper failed: {e}")
|
|
|
|
|
|
|
|
|
414 |
|
415 |
+
@app.get("/playground", response_class=HTMLResponse)
|
416 |
+
async def playground():
|
417 |
+
"""Serves the playground.html file."""
|
418 |
+
html_content = read_html_file("playground.html")
|
419 |
+
if html_content is None:
|
420 |
+
raise HTTPException(status_code=404, detail="playground.html not found")
|
421 |
+
return HTMLResponse(content=html_content)
|
422 |
|
423 |
+
@app.get("/image-playground", response_class=HTMLResponse)
|
424 |
+
async def image_playground():
|
425 |
+
"""Serves the image-playground.html file."""
|
426 |
+
html_content = read_html_file("image-playground.html")
|
427 |
+
if html_content is None:
|
428 |
+
raise HTTPException(status_code=404, detail="image-playground.html not found")
|
429 |
+
return HTMLResponse(content=html_content)
|
430 |
|
431 |
+
GITHUB_BASE = "[https://raw.githubusercontent.com/Parthsadaria/Vetra/main](https://raw.githubusercontent.com/Parthsadaria/Vetra/main)"
|
432 |
+
|
433 |
+
FILES = {
|
434 |
+
"html": "index.html",
|
435 |
+
"css": "style.css",
|
436 |
+
"js": "script.js"
|
437 |
+
}
|
438 |
+
|
439 |
+
async def get_github_file(filename: str) -> Optional[str]:
|
440 |
+
"""Fetches a file from a specified GitHub raw URL."""
|
441 |
+
url = f"{GITHUB_BASE}/{filename}"
|
442 |
+
async with httpx.AsyncClient() as client:
|
443 |
+
try:
|
444 |
+
res = await client.get(url, follow_redirects=True)
|
445 |
+
res.raise_for_status() # Raise an exception for HTTP errors (4xx or 5xx)
|
446 |
+
return res.text
|
447 |
+
except httpx.HTTPStatusError as e:
|
448 |
+
print(f"Error fetching {filename} from GitHub: {e.response.status_code} - {e.response.text}")
|
449 |
+
return None
|
450 |
+
except httpx.RequestError as e:
|
451 |
+
print(f"Request error fetching {filename} from GitHub: {e}")
|
452 |
+
return None
|
453 |
+
|
454 |
+
@app.get("/vetra", response_class=HTMLResponse)
|
455 |
+
async def serve_vetra():
|
456 |
+
"""
|
457 |
+
Serves a dynamic HTML page by fetching HTML, CSS, and JS from GitHub
|
458 |
+
and embedding them into a single HTML response.
|
459 |
+
"""
|
460 |
+
html = await get_github_file(FILES["html"])
|
461 |
+
css = await get_github_file(FILES["css"])
|
462 |
+
js = await get_github_file(FILES["js"])
|
463 |
+
|
464 |
+
if not html:
|
465 |
+
raise HTTPException(status_code=404, detail="index.html not found on GitHub")
|
466 |
+
|
467 |
+
final_html = html.replace(
|
468 |
+
"</head>",
|
469 |
+
f"<style>{css or '/* CSS not found */'}</style></head>"
|
470 |
+
).replace(
|
471 |
+
"</body>",
|
472 |
+
f"<script>{js or '// JS not found'}</script></body>"
|
473 |
+
)
|
474 |
+
|
475 |
+
return HTMLResponse(content=final_html)
|
476 |
+
|
477 |
+
@app.get("/searchgpt")
|
478 |
+
async def search_gpt(q: str, request: Request, stream: Optional[bool] = False, systemprompt: Optional[str] = None):
|
479 |
+
"""
|
480 |
+
Endpoint for search-based AI completion.
|
481 |
+
Records usage and streams results.
|
482 |
+
"""
|
483 |
+
if not q:
|
484 |
+
raise HTTPException(status_code=400, detail="Query parameter 'q' is required")
|
485 |
+
|
486 |
+
# Record usage for searchgpt endpoint
|
487 |
+
usage_tracker.record_request(request=request, model="searchgpt", endpoint="/searchgpt")
|
488 |
|
489 |
+
queue = await generate_search_async(q, systemprompt=systemprompt, stream=True)
|
490 |
+
|
491 |
+
if stream:
|
492 |
+
async def stream_generator():
|
493 |
+
"""Generator for streaming search results."""
|
494 |
+
collected_text = ""
|
495 |
+
while True:
|
496 |
+
item = await queue.get()
|
497 |
+
if item is None:
|
498 |
+
break
|
499 |
+
|
500 |
+
if "error" in item:
|
501 |
+
# Yield error as a data event so client can handle it gracefully
|
502 |
+
yield f"data: {json.dumps({'error': item['error']})}\n\n"
|
503 |
+
break
|
504 |
+
|
505 |
+
if "data" in item:
|
506 |
+
yield item["data"]
|
507 |
+
collected_text += item.get("text", "")
|
508 |
+
|
509 |
+
return StreamingResponse(
|
510 |
+
stream_generator(),
|
511 |
+
media_type="text/event-stream"
|
512 |
+
)
|
513 |
+
else:
|
514 |
+
# Non-streaming response: collect all chunks and return as JSON
|
515 |
+
collected_text = ""
|
516 |
+
while True:
|
517 |
+
item = await queue.get()
|
518 |
+
if item is None:
|
519 |
+
break
|
520 |
+
|
521 |
+
if "error" in item:
|
522 |
+
raise HTTPException(status_code=500, detail=item["error"])
|
523 |
+
|
524 |
+
collected_text += item.get("text", "")
|
525 |
+
|
526 |
+
return JSONResponse(content={"response": collected_text})
|
527 |
+
|
528 |
+
header_url = os.getenv('HEADER_URL') # This variable should be configured in .env
|
529 |
+
|
530 |
+
@app.post("/chat/completions")
|
531 |
+
@app.post("/api/v1/chat/completions")
|
532 |
+
async def get_completion(payload: Payload, request: Request, authenticated: bool = Depends(verify_api_key)):
|
533 |
+
"""
|
534 |
+
Proxies chat completion requests to various AI model endpoints based on the model specified in the payload.
|
535 |
+
Records usage and handles streaming responses.
|
536 |
+
"""
|
537 |
+
if not server_status:
|
538 |
+
raise HTTPException(
|
539 |
+
status_code=503,
|
540 |
+
detail="Server is under maintenance. Please try again later."
|
541 |
+
)
|
542 |
+
|
543 |
+
model_to_use = payload.model or "gpt-4o-mini" # Default model
|
544 |
+
|
545 |
+
# Validate if the requested model is available
|
546 |
+
if available_model_ids and model_to_use not in set(available_model_ids):
|
547 |
+
raise HTTPException(
|
548 |
+
status_code=400,
|
549 |
+
detail=f"Model '{model_to_use}' is not available. Check /models for the available model list."
|
550 |
+
)
|
551 |
+
|
552 |
+
# Record usage before making the external API call
|
553 |
+
usage_tracker.record_request(request=request, model=model_to_use, endpoint="/chat/completions")
|
554 |
+
|
555 |
+
payload_dict = payload.dict()
|
556 |
+
payload_dict["model"] = model_to_use # Ensure the payload has the resolved model name
|
557 |
+
|
558 |
+
stream_enabled = payload_dict.get("stream", True) # Default to streaming if not specified
|
559 |
+
|
560 |
+
env_vars = get_env_vars()
|
561 |
+
|
562 |
+
endpoint = None
|
563 |
+
custom_headers = {}
|
564 |
+
target_url_path = "/v1/chat/completions" # Default path for OpenAI-like APIs
|
565 |
+
|
566 |
+
# Determine the correct endpoint and headers based on the model
|
567 |
+
if model_to_use in mistral_models:
|
568 |
+
endpoint = env_vars['mistral_api']
|
569 |
+
custom_headers = {
|
570 |
+
"Authorization": f"Bearer {env_vars['mistral_key']}"
|
571 |
+
}
|
572 |
+
elif model_to_use in pollinations_models:
|
573 |
+
endpoint = env_vars['secret_api_endpoint_4']
|
574 |
+
custom_headers = {} # Pollinations.ai might not require auth
|
575 |
+
elif model_to_use in alternate_models:
|
576 |
+
endpoint = env_vars['secret_api_endpoint_2']
|
577 |
+
custom_headers = {}
|
578 |
+
elif model_to_use in claude_3_models:
|
579 |
+
endpoint = env_vars['secret_api_endpoint_5']
|
580 |
+
custom_headers = {} # Assuming no specific auth needed for this proxy
|
581 |
+
elif model_to_use in gemini_models:
|
582 |
+
endpoint = env_vars['secret_api_endpoint_6']
|
583 |
+
if not endpoint:
|
584 |
+
raise HTTPException(status_code=500, detail="Gemini API endpoint (SECRET_API_ENDPOINT_6) not configured.")
|
585 |
+
if not env_vars['gemini_key']:
|
586 |
+
raise HTTPException(status_code=500, detail="GEMINI_KEY not configured for Gemini models.")
|
587 |
+
custom_headers = {
|
588 |
+
"Authorization": f"Bearer {env_vars['gemini_key']}"
|
589 |
+
}
|
590 |
+
target_url_path = "/chat/completions" # Gemini's specific path
|
591 |
+
else:
|
592 |
+
# Default fallback for other models (e.g., OpenAI compatible APIs)
|
593 |
+
endpoint = env_vars['secret_api_endpoint']
|
594 |
+
custom_headers = {
|
595 |
+
"Origin": header_url,
|
596 |
+
"Priority": "u=1, i",
|
597 |
+
"Referer": header_url
|
598 |
+
}
|
599 |
+
|
600 |
+
if not endpoint:
|
601 |
+
raise HTTPException(status_code=500, detail=f"No API endpoint configured for model: {model_to_use}")
|
602 |
+
|
603 |
+
print(f"Proxying request for model '{model_to_use}' to endpoint: {endpoint}{target_url_path}")
|
604 |
+
|
605 |
+
async def real_time_stream_generator():
|
606 |
+
"""Generator to stream responses from the upstream API."""
|
607 |
+
try:
|
608 |
+
async with httpx.AsyncClient(timeout=60.0) as client:
|
609 |
+
# Stream the request to the upstream API
|
610 |
+
async with client.stream("POST", f"{endpoint}{target_url_path}", json=payload_dict, headers=custom_headers) as response:
|
611 |
+
# Handle non-2xx responses from the upstream API
|
612 |
+
if response.status_code >= 400:
|
613 |
+
error_messages = {
|
614 |
+
400: "Bad request. Verify input data.",
|
615 |
+
401: "Unauthorized. Invalid API key for upstream service.",
|
616 |
+
403: "Forbidden. You do not have access to this resource on upstream.",
|
617 |
+
404: "The requested resource was not found on upstream.",
|
618 |
+
422: "Unprocessable entity. Check your payload for upstream API.",
|
619 |
+
500: "Internal server error from upstream API."
|
620 |
+
}
|
621 |
+
detail_message = error_messages.get(response.status_code, f"Upstream error code: {response.status_code}")
|
622 |
+
|
623 |
+
# Attempt to read upstream error response body for more detail
|
624 |
+
try:
|
625 |
+
error_body = await response.aread()
|
626 |
+
error_json = json.loads(error_body.decode('utf-8'))
|
627 |
+
if 'error' in error_json and 'message' in error_json['error']:
|
628 |
+
detail_message += f" - Upstream detail: {error_json['error']['message']}"
|
629 |
+
elif 'detail' in error_json:
|
630 |
+
detail_message += f" - Upstream detail: {error_json['detail']}"
|
631 |
+
else:
|
632 |
+
detail_message += f" - Upstream raw: {error_body.decode('utf-8')[:200]}..." # Limit for logging
|
633 |
+
except (json.JSONDecodeError, UnicodeDecodeError):
|
634 |
+
detail_message += f" - Upstream raw: {error_body.decode('utf-8', errors='ignore')[:200]}..."
|
635 |
+
|
636 |
+
raise HTTPException(status_code=response.status_code, detail=detail_message)
|
637 |
+
|
638 |
+
# Yield each line from the upstream stream
|
639 |
+
async for line in response.aiter_lines():
|
640 |
+
if line:
|
641 |
+
yield line + "\n"
|
642 |
+
except httpx.TimeoutException:
|
643 |
+
raise HTTPException(status_code=504, detail="Request to upstream AI service timed out.")
|
644 |
+
except httpx.RequestError as e:
|
645 |
+
raise HTTPException(status_code=502, detail=f"Failed to connect to upstream AI service: {str(e)}")
|
646 |
+
except Exception as e:
|
647 |
+
# Re-raise HTTPException if it's already one, otherwise wrap in a 500
|
648 |
+
if isinstance(e, HTTPException):
|
649 |
+
raise e
|
650 |
+
print(f"An unexpected error occurred during chat completion proxy: {e}")
|
651 |
+
raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {str(e)}")
|
652 |
+
|
653 |
+
if stream_enabled:
|
654 |
+
return StreamingResponse(
|
655 |
+
real_time_stream_generator(),
|
656 |
+
media_type="text/event-stream",
|
657 |
+
headers={
|
658 |
+
"Content-Type": "text/event-stream",
|
659 |
+
"Cache-Control": "no-cache",
|
660 |
+
"Connection": "keep-alive",
|
661 |
+
"X-Accel-Buffering": "no" # Disable buffering for SSE
|
662 |
+
}
|
663 |
+
)
|
664 |
+
else:
|
665 |
+
# For non-streaming requests, collect all parts and return a single JSON response
|
666 |
+
response_content_lines = []
|
667 |
+
async for line in real_time_stream_generator():
|
668 |
+
response_content_lines.append(line)
|
669 |
+
|
670 |
+
full_response_text = "".join(response_content_lines)
|
671 |
+
|
672 |
+
# Parse the concatenated stream data. This often involves stripping "data: " prefix
|
673 |
+
# and combining JSON objects from each line.
|
674 |
+
parsed_data = []
|
675 |
+
for line in full_response_text.splitlines():
|
676 |
+
if line.startswith("data: "):
|
677 |
+
try:
|
678 |
+
parsed_data.append(json.loads(line[6:]))
|
679 |
+
except json.JSONDecodeError:
|
680 |
+
print(f"Warning: Could not decode JSON line in non-streaming response: {line}")
|
681 |
+
|
682 |
+
# Attempt to reconstruct a single coherent JSON response
|
683 |
+
# This logic might need refinement based on actual API response format for non-streaming
|
684 |
+
final_json_response = {}
|
685 |
+
if parsed_data:
|
686 |
+
# Example: For OpenAI-like API, you might want the last 'choices' part
|
687 |
+
# This is a simplification and might need adjustment for other APIs
|
688 |
+
if 'choices' in parsed_data[-1]:
|
689 |
+
final_json_response = parsed_data[-1]
|
690 |
+
else:
|
691 |
+
# Fallback: just return the list of parsed objects
|
692 |
+
final_json_response = {"response_parts": parsed_data}
|
693 |
+
|
694 |
+
if not final_json_response:
|
695 |
+
# If nothing was parsed, indicate an issue
|
696 |
+
raise HTTPException(status_code=500, detail="No valid JSON response received from upstream API for non-streaming request.")
|
697 |
+
|
698 |
+
return JSONResponse(content=final_json_response)
|
699 |
+
|
700 |
+
@app.post("/images/generations")
|
701 |
+
async def create_image(payload: ImageGenerationPayload, request: Request, authenticated: bool = Depends(verify_api_key)):
|
702 |
+
"""
|
703 |
+
Proxies image generation requests to a dedicated image generation API.
|
704 |
+
Records usage.
|
705 |
+
"""
|
706 |
+
if not server_status:
|
707 |
+
raise HTTPException(
|
708 |
+
status_code=503,
|
709 |
+
detail="Server is under maintenance. Please try again later."
|
710 |
+
)
|
711 |
+
|
712 |
+
if payload.model not in supported_image_models:
|
713 |
+
raise HTTPException(
|
714 |
+
status_code=400,
|
715 |
+
detail=f"Model '{payload.model}' is not supported for image generation. Supported models are: {', '.join(supported_image_models)}"
|
716 |
+
)
|
717 |
+
|
718 |
+
# Record usage for image generation endpoint
|
719 |
+
usage_tracker.record_request(request=request, model=payload.model, endpoint="/images/generations")
|
720 |
+
|
721 |
+
api_payload = {
|
722 |
+
"model": payload.model,
|
723 |
+
"prompt": payload.prompt,
|
724 |
+
"size": payload.size,
|
725 |
+
"n": payload.number # Often 'n' for number of images in APIs
|
726 |
+
}
|
727 |
+
|
728 |
+
target_api_url = get_env_vars().get('new_img') # Get the image API URL from env vars
|
729 |
+
if not target_api_url:
|
730 |
+
raise HTTPException(status_code=500, detail="Image generation API endpoint (NEW_IMG) not configured.")
|
731 |
+
|
732 |
+
try:
|
733 |
+
async with httpx.AsyncClient(timeout=60.0) as client:
|
734 |
+
response = await client.post(target_api_url, json=api_payload)
|
735 |
+
|
736 |
+
response.raise_for_status() # Raise an exception for bad status codes (4xx or 5xx)
|
737 |
+
|
738 |
+
return JSONResponse(content=response.json())
|
739 |
+
|
740 |
+
except httpx.TimeoutException:
|
741 |
+
raise HTTPException(status_code=504, detail="Image generation request timed out.")
|
742 |
+
except httpx.RequestError as e:
|
743 |
+
raise HTTPException(status_code=502, detail=f"Error connecting to image generation service: {e}")
|
744 |
+
except httpx.HTTPStatusError as e:
|
745 |
+
error_detail = e.response.json().get("detail", f"Image generation failed with status code: {e.response.status_code}")
|
746 |
+
raise HTTPException(status_code=e.response.status_code, detail=error_detail)
|
747 |
+
except Exception as e:
|
748 |
+
print(f"An unexpected error occurred during image generation: {e}")
|
749 |
+
raise HTTPException(status_code=500, detail=f"An unexpected error occurred during image generation: {e}")
|
750 |
+
|
751 |
+
@app.get("/usage")
|
752 |
+
async def get_usage_json(days: int = 7):
|
753 |
+
"""
|
754 |
+
Returns the raw usage data as JSON.
|
755 |
+
Can specify the number of days for the summary.
|
756 |
+
"""
|
757 |
+
return usage_tracker.get_usage_summary(days)
|
758 |
+
|
759 |
+
def generate_usage_html(usage_data: Dict[str, Any]):
|
760 |
+
"""
|
761 |
+
Generates an HTML page to display usage statistics.
|
762 |
+
Includes tables for model, API endpoint usage, daily usage, and recent requests.
|
763 |
+
Also includes placeholders for Chart.js to render graphs.
|
764 |
+
"""
|
765 |
+
# Prepare data for Chart.js
|
766 |
+
# Model Usage Chart Data
|
767 |
+
model_labels = list(usage_data['model_usage_period'].keys())
|
768 |
+
model_counts = list(usage_data['model_usage_period'].values())
|
769 |
|
770 |
+
# Endpoint Usage Chart Data
|
771 |
+
endpoint_labels = list(usage_data['endpoint_usage_period'].keys())
|
772 |
+
endpoint_counts = list(usage_data['endpoint_usage_period'].values())
|
773 |
+
|
774 |
+
# Daily Usage Chart Data
|
775 |
+
daily_dates = list(usage_data['daily_usage_period'].keys())
|
776 |
+
daily_requests = [data['requests'] for data in usage_data['daily_usage_period'].values()]
|
777 |
+
daily_unique_ips = [data['unique_ips_count'] for data in usage_data['daily_usage_period'].values()]
|
778 |
+
|
779 |
+
# Format table rows for HTML
|
780 |
+
model_usage_all_time_rows = "\n".join([
|
781 |
+
f"""
|
782 |
+
<tr>
|
783 |
+
<td>{model}</td>
|
784 |
+
<td>{stats['total_requests']}</td>
|
785 |
+
<td>{datetime.datetime.fromisoformat(stats['first_used']).strftime("%Y-%m-%d %H:%M")}</td>
|
786 |
+
<td>{datetime.datetime.fromisoformat(stats['last_used']).strftime("%Y-%m-%d %H:%M")}</td>
|
787 |
+
</tr>
|
788 |
+
""" for model, stats in usage_data['all_time_model_usage'].items()
|
789 |
+
])
|
790 |
+
|
791 |
+
api_usage_all_time_rows = "\n".join([
|
792 |
+
f"""
|
793 |
+
<tr>
|
794 |
+
<td>{endpoint}</td>
|
795 |
+
<td>{stats['total_requests']}</td>
|
796 |
+
<td>{datetime.datetime.fromisoformat(stats['first_used']).strftime("%Y-%m-%d %H:%M")}</td>
|
797 |
+
<td>{datetime.datetime.fromisoformat(stats['last_used']).strftime("%Y-%m-%d %H:%M")}</td>
|
798 |
+
</tr>
|
799 |
+
""" for endpoint, stats in usage_data['all_time_endpoint_usage'].items()
|
800 |
+
])
|
801 |
+
|
802 |
+
daily_usage_table_rows = "\n".join([
|
803 |
+
f"""
|
804 |
+
<tr>
|
805 |
+
<td>{date}</td>
|
806 |
+
<td>{data['requests']}</td>
|
807 |
+
<td>{data['unique_ips_count']}</td>
|
808 |
+
</tr>
|
809 |
+
""" for date, data in usage_data['daily_usage_period'].items()
|
810 |
+
])
|
811 |
+
|
812 |
+
recent_requests_rows = "\n".join([
|
813 |
+
f"""
|
814 |
+
<tr>
|
815 |
+
<td>{datetime.datetime.fromisoformat(req['timestamp']).strftime("%Y-%m-%d %H:%M:%S")}</td>
|
816 |
<td>{req['model']}</td>
|
817 |
<td>{req['endpoint']}</td>
|
818 |
<td>{req['ip_address']}</td>
|
819 |
+
<td>{req['user_agent']}</td>
|
820 |
+
</tr>
|
821 |
+
""" for req in usage_data['recent_requests']
|
822 |
])
|
823 |
|
824 |
+
html_content = f"""
|
825 |
<!DOCTYPE html>
|
826 |
<html lang="en">
|
827 |
<head>
|
828 |
<meta charset="UTF-8">
|
829 |
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
830 |
+
<title>Lokiai AI - Usage Statistics</title>
|
831 |
+
<link href="[https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap](https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap)" rel="stylesheet">
|
832 |
+
<script src="[https://cdn.jsdelivr.net/npm/chart.js](https://cdn.jsdelivr.net/npm/chart.js)"></script>
|
833 |
<style>
|
834 |
+
:root {{
|
835 |
+
--bg-dark: #0f1011;
|
836 |
+
--bg-darker: #070708;
|
837 |
+
--text-primary: #e6e6e6;
|
838 |
+
--text-secondary: #8c8c8c;
|
839 |
+
--border-color: #2c2c2c;
|
840 |
+
--accent-color: #3a6ee0;
|
841 |
+
--accent-hover: #4a7ef0;
|
842 |
+
--chart-bg-light: rgba(58, 110, 224, 0.2);
|
843 |
+
--chart-border-light: #3a6ee0;
|
844 |
+
}}
|
845 |
+
body {{
|
846 |
+
font-family: 'Inter', sans-serif;
|
847 |
+
background-color: var(--bg-dark);
|
848 |
+
color: var(--text-primary);
|
849 |
+
max-width: 1200px;
|
850 |
+
margin: 0 auto;
|
851 |
+
padding: 40px 20px;
|
852 |
+
line-height: 1.6;
|
853 |
+
}}
|
854 |
+
.logo {{
|
855 |
+
display: flex;
|
856 |
+
align-items: center;
|
857 |
+
justify-content: center;
|
858 |
+
margin-bottom: 30px;
|
859 |
+
}}
|
860 |
+
.logo h1 {{
|
861 |
+
font-weight: 700;
|
862 |
+
font-size: 2.8em;
|
863 |
+
color: var(--text-primary);
|
864 |
+
margin-left: 15px;
|
865 |
+
}}
|
866 |
+
.logo img {{
|
867 |
+
width: 70px;
|
868 |
+
height: 70px;
|
869 |
+
border-radius: 12px;
|
870 |
+
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
|
871 |
+
}}
|
872 |
+
.container {{
|
873 |
+
background-color: var(--bg-darker);
|
874 |
+
border-radius: 16px;
|
875 |
+
padding: 30px;
|
876 |
+
box-shadow: 0 20px 50px rgba(0,0,0,0.4);
|
877 |
+
border: 1px solid var(--border-color);
|
878 |
+
}}
|
879 |
+
h2, h3 {{
|
880 |
+
color: var(--text-primary);
|
881 |
+
border-bottom: 2px solid var(--border-color);
|
882 |
+
padding-bottom: 12px;
|
883 |
+
margin-top: 40px;
|
884 |
+
margin-bottom: 25px;
|
885 |
+
font-weight: 600;
|
886 |
+
font-size: 1.8em;
|
887 |
+
}}
|
888 |
+
.summary-grid {{
|
889 |
+
display: grid;
|
890 |
+
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
891 |
+
gap: 20px;
|
892 |
+
margin-bottom: 30px;
|
893 |
+
}}
|
894 |
+
.summary-card {{
|
895 |
+
background-color: var(--bg-dark);
|
896 |
+
border-radius: 10px;
|
897 |
+
padding: 20px;
|
898 |
+
text-align: center;
|
899 |
+
border: 1px solid var(--border-color);
|
900 |
+
box-shadow: 0 8px 20px rgba(0,0,0,0.2);
|
901 |
+
transition: transform 0.2s ease-in-out;
|
902 |
+
}}
|
903 |
+
.summary-card:hover {{
|
904 |
+
transform: translateY(-5px);
|
905 |
+
}}
|
906 |
+
.summary-card h3 {{
|
907 |
+
margin-top: 0;
|
908 |
+
font-size: 1.1em;
|
909 |
+
color: var(--text-secondary);
|
910 |
+
border-bottom: none;
|
911 |
+
padding-bottom: 0;
|
912 |
+
margin-bottom: 10px;
|
913 |
+
}}
|
914 |
+
.summary-card p {{
|
915 |
+
font-size: 2.2em;
|
916 |
+
font-weight: 700;
|
917 |
+
color: var(--accent-color);
|
918 |
+
margin: 0;
|
919 |
+
}}
|
920 |
+
table {{
|
921 |
+
width: 100%;
|
922 |
+
border-collapse: separate;
|
923 |
+
border-spacing: 0;
|
924 |
+
margin-bottom: 40px;
|
925 |
+
background-color: var(--bg-dark);
|
926 |
+
border-radius: 10px;
|
927 |
+
overflow: hidden;
|
928 |
+
box-shadow: 0 8px 20px rgba(0,0,0,0.2);
|
929 |
+
}}
|
930 |
+
th, td {{
|
931 |
+
border: 1px solid var(--border-color);
|
932 |
+
padding: 15px;
|
933 |
+
text-align: left;
|
934 |
+
transition: background-color 0.3s ease;
|
935 |
+
}}
|
936 |
+
th {{
|
937 |
+
background-color: #1a1a1a;
|
938 |
+
color: var(--text-primary);
|
939 |
+
font-weight: 600;
|
940 |
+
text-transform: uppercase;
|
941 |
+
font-size: 0.95em;
|
942 |
+
}}
|
943 |
+
tr:nth-child(even) {{
|
944 |
+
background-color: rgba(255,255,255,0.03);
|
945 |
+
}}
|
946 |
+
tr:hover {{
|
947 |
+
background-color: rgba(62,100,255,0.1);
|
948 |
+
}}
|
949 |
+
.chart-container {{
|
950 |
+
background-color: var(--bg-dark);
|
951 |
+
border-radius: 10px;
|
952 |
+
padding: 20px;
|
953 |
+
margin-bottom: 40px;
|
954 |
+
border: 1px solid var(--border-color);
|
955 |
+
box-shadow: 0 8px 20px rgba(0,0,0,0.2);
|
956 |
+
max-height: 400px; /* Limit chart height */
|
957 |
+
position: relative; /* For responsive canvas */
|
958 |
+
}}
|
959 |
+
canvas {{
|
960 |
+
max-width: 100% !important;
|
961 |
+
height: auto !important;
|
962 |
+
}}
|
963 |
+
@media (max-width: 768px) {{
|
964 |
+
body {{
|
965 |
+
padding: 20px 10px;
|
966 |
+
}}
|
967 |
+
.container {{
|
968 |
+
padding: 20px;
|
969 |
+
}}
|
970 |
+
.logo h1 {{
|
971 |
+
font-size: 2em;
|
972 |
+
}}
|
973 |
+
.summary-card p {{
|
974 |
+
font-size: 1.8em;
|
975 |
+
}}
|
976 |
+
h2, h3 {{
|
977 |
+
font-size: 1.5em;
|
978 |
+
}}
|
979 |
+
table {{
|
980 |
+
font-size: 0.85em;
|
981 |
+
}}
|
982 |
+
th, td {{
|
983 |
+
padding: 10px;
|
984 |
+
}}
|
985 |
+
}}
|
986 |
</style>
|
987 |
</head>
|
988 |
<body>
|
989 |
<div class="container">
|
990 |
+
<div class="logo">
|
991 |
+
<img src="" alt="Lokiai AI Logo">
|
992 |
+
<h1>Lokiai AI Usage</h1>
|
|
|
|
|
993 |
</div>
|
994 |
+
|
995 |
+
<div class="summary-grid">
|
996 |
+
<div class="summary-card">
|
997 |
+
<h3>Total Requests (All Time)</h3>
|
998 |
+
<p>{usage_data['total_requests']}</p>
|
999 |
+
</div>
|
1000 |
+
<div class="summary-card">
|
1001 |
+
<h3>Unique IPs (All Time)</h3>
|
1002 |
+
<p>{usage_data['unique_ips_total_count']}</p>
|
1003 |
+
</div>
|
1004 |
+
<div class="summary-card">
|
1005 |
+
<h3>Models Used (Last {days} Days)</h3>
|
1006 |
+
<p>{len(usage_data['model_usage_period'])}</p>
|
1007 |
+
</div>
|
1008 |
+
<div class="summary-card">
|
1009 |
+
<h3>Endpoints Used (Last {days} Days)</h3>
|
1010 |
+
<p>{len(usage_data['endpoint_usage_period'])}</p>
|
1011 |
+
</div>
|
1012 |
</div>
|
1013 |
+
|
1014 |
+
<h2>Daily Usage (Last {days} Days)</h2>
|
1015 |
+
<div class="chart-container">
|
1016 |
+
<canvas id="dailyRequestsChart"></canvas>
|
1017 |
+
</div>
|
1018 |
+
<table>
|
1019 |
+
<thead>
|
1020 |
+
<tr>
|
1021 |
+
<th>Date</th>
|
1022 |
+
<th>Requests</th>
|
1023 |
+
<th>Unique IPs</th>
|
1024 |
+
</tr>
|
1025 |
+
</thead>
|
1026 |
+
<tbody>
|
1027 |
+
{daily_usage_table_rows}
|
1028 |
+
</tbody>
|
1029 |
+
</table>
|
1030 |
+
|
1031 |
+
<h2>Model Usage (Last {days} Days)</h2>
|
1032 |
+
<div class="chart-container">
|
1033 |
+
<canvas id="modelUsageChart"></canvas>
|
1034 |
+
</div>
|
1035 |
+
<h3>Model Usage (All Time Details)</h3>
|
1036 |
+
<table>
|
1037 |
+
<thead>
|
1038 |
+
<tr>
|
1039 |
+
<th>Model</th>
|
1040 |
+
<th>Total Requests</th>
|
1041 |
+
<th>First Used</th>
|
1042 |
+
<th>Last Used</th>
|
1043 |
+
</tr>
|
1044 |
+
</thead>
|
1045 |
+
<tbody>
|
1046 |
+
{model_usage_all_time_rows}
|
1047 |
+
</tbody>
|
1048 |
+
</table>
|
1049 |
+
|
1050 |
+
<h2>API Endpoint Usage (Last {days} Days)</h2>
|
1051 |
+
<div class="chart-container">
|
1052 |
+
<canvas id="endpointUsageChart"></canvas>
|
1053 |
</div>
|
1054 |
+
<h3>API Endpoint Usage (All Time Details)</h3>
|
1055 |
+
<table>
|
1056 |
+
<thead>
|
1057 |
+
<tr>
|
1058 |
+
<th>Endpoint</th>
|
1059 |
+
<th>Total Requests</th>
|
1060 |
+
<th>First Used</th>
|
1061 |
+
<th>Last Used</th>
|
1062 |
+
</tr>
|
1063 |
+
</thead>
|
1064 |
+
<tbody>
|
1065 |
+
{api_usage_all_time_rows}
|
1066 |
+
</tbody>
|
1067 |
+
</table>
|
1068 |
+
|
1069 |
+
<h2>Recent Requests (Last 20)</h2>
|
1070 |
+
<table>
|
1071 |
+
<thead>
|
1072 |
+
<tr>
|
1073 |
+
<th>Timestamp</th>
|
1074 |
+
<th>Model</th>
|
1075 |
+
<th>Endpoint</th>
|
1076 |
+
<th>IP Address</th>
|
1077 |
+
<th>User Agent</th>
|
1078 |
+
</tr>
|
1079 |
+
</thead>
|
1080 |
+
<tbody>
|
1081 |
+
{recent_requests_rows}
|
1082 |
+
</tbody>
|
1083 |
+
</table>
|
1084 |
</div>
|
1085 |
+
|
1086 |
<script>
|
1087 |
+
// Chart.js data and rendering logic
|
1088 |
+
const modelLabels = {json.dumps(model_labels)};
|
1089 |
+
const modelCounts = {json.dumps(model_counts)};
|
1090 |
+
|
1091 |
+
const endpointLabels = {json.dumps(endpoint_labels)};
|
1092 |
+
const endpointCounts = {json.dumps(endpoint_counts)};
|
1093 |
+
|
1094 |
+
const dailyDates = {json.dumps(daily_dates)};
|
1095 |
+
const dailyRequests = {json.dumps(daily_requests)};
|
1096 |
+
const dailyUniqueIps = {json.dumps(daily_unique_ips)};
|
1097 |
+
|
1098 |
+
// Model Usage Chart (Bar Chart)
|
1099 |
+
new Chart(document.getElementById('modelUsageChart'), {{
|
1100 |
+
type: 'bar',
|
1101 |
+
data: {{
|
1102 |
+
labels: modelLabels,
|
1103 |
+
datasets: [{{
|
1104 |
+
label: 'Requests',
|
1105 |
+
data: modelCounts,
|
1106 |
+
backgroundColor: 'var(--chart-bg-light)',
|
1107 |
+
borderColor: 'var(--chart-border-light)',
|
1108 |
+
borderWidth: 1,
|
1109 |
+
borderRadius: 5,
|
1110 |
+
}}]
|
1111 |
+
}},
|
1112 |
+
options: {{
|
1113 |
+
responsive: true,
|
1114 |
+
maintainAspectRatio: false,
|
1115 |
+
plugins: {{
|
1116 |
+
legend: {{
|
1117 |
+
labels: {{
|
1118 |
+
color: 'var(--text-primary)'
|
1119 |
+
}}
|
1120 |
+
}},
|
1121 |
+
title: {{
|
1122 |
+
display: true,
|
1123 |
+
text: 'Model Usage',
|
1124 |
+
color: 'var(--text-primary)'
|
1125 |
+
}}
|
1126 |
+
}},
|
1127 |
+
scales: {{
|
1128 |
+
x: {{
|
1129 |
+
ticks: {{
|
1130 |
+
color: 'var(--text-secondary)'
|
1131 |
+
}},
|
1132 |
+
grid: {{
|
1133 |
+
color: 'var(--border-color)'
|
1134 |
+
}}
|
1135 |
+
}},
|
1136 |
+
y: {{
|
1137 |
+
beginAtZero: true,
|
1138 |
+
ticks: {{
|
1139 |
+
color: 'var(--text-secondary)'
|
1140 |
+
}},
|
1141 |
+
grid: {{
|
1142 |
+
color: 'var(--border-color)'
|
1143 |
+
}}
|
1144 |
+
}}
|
1145 |
+
}}
|
1146 |
}}
|
1147 |
}});
|
1148 |
+
|
1149 |
+
// Endpoint Usage Chart (Doughnut Chart)
|
1150 |
+
new Chart(document.getElementById('endpointUsageChart'), {{
|
|
|
|
|
|
|
1151 |
type: 'doughnut',
|
1152 |
+
data: {{
|
1153 |
+
labels: endpointLabels,
|
1154 |
+
datasets: [{{
|
1155 |
+
label: 'Requests',
|
1156 |
+
data: endpointCounts,
|
1157 |
+
backgroundColor: [
|
1158 |
+
'#3a6ee0', '#5b8bff', '#8dc4ff', '#b3d8ff', '#d0e8ff',
|
1159 |
+
'#FF6384', '#36A2EB', '#FFCE56', '#4BC0C0', '#9966FF'
|
1160 |
+
],
|
1161 |
+
hoverOffset: 4
|
1162 |
+
}}]
|
1163 |
+
}},
|
1164 |
+
options: {{
|
1165 |
+
responsive: true,
|
1166 |
+
maintainAspectRatio: false,
|
1167 |
+
plugins: {{
|
1168 |
+
legend: {{
|
1169 |
+
position: 'right',
|
1170 |
+
labels: {{
|
1171 |
+
color: 'var(--text-primary)'
|
1172 |
+
}}
|
1173 |
+
}},
|
1174 |
+
title: {{
|
1175 |
+
display: true,
|
1176 |
+
text: 'API Endpoint Usage',
|
1177 |
+
color: 'var(--text-primary)'
|
1178 |
+
}}
|
1179 |
+
}}
|
1180 |
+
}}
|
1181 |
+
}});
|
1182 |
+
|
1183 |
+
// Daily Requests Chart (Line Chart)
|
1184 |
+
new Chart(document.getElementById('dailyRequestsChart'), {{
|
1185 |
+
type: 'line',
|
1186 |
+
data: {{
|
1187 |
+
labels: dailyDates,
|
1188 |
+
datasets: [
|
1189 |
+
{{
|
1190 |
+
label: 'Total Requests',
|
1191 |
+
data: dailyRequests,
|
1192 |
+
borderColor: 'var(--accent-color)',
|
1193 |
+
backgroundColor: 'rgba(58, 110, 224, 0.1)',
|
1194 |
+
fill: true,
|
1195 |
+
tension: 0.3
|
1196 |
+
}},
|
1197 |
+
{{
|
1198 |
+
label: 'Unique IPs',
|
1199 |
+
data: dailyUniqueIps,
|
1200 |
+
borderColor: '#FFCE56', // A distinct color for unique IPs
|
1201 |
+
backgroundColor: 'rgba(255, 206, 86, 0.1)',
|
1202 |
+
fill: true,
|
1203 |
+
tension: 0.3
|
1204 |
+
}}
|
1205 |
+
]
|
1206 |
+
}},
|
1207 |
+
options: {{
|
1208 |
+
responsive: true,
|
1209 |
+
maintainAspectRatio: false,
|
1210 |
+
plugins: {{
|
1211 |
+
legend: {{
|
1212 |
+
labels: {{
|
1213 |
+
color: 'var(--text-primary)'
|
1214 |
+
}}
|
1215 |
+
}},
|
1216 |
+
title: {{
|
1217 |
+
display: true,
|
1218 |
+
text: 'Daily Requests and Unique IPs',
|
1219 |
+
color: 'var(--text-primary)'
|
1220 |
+
}}
|
1221 |
+
}},
|
1222 |
+
scales: {{
|
1223 |
+
x: {{
|
1224 |
+
ticks: {{
|
1225 |
+
color: 'var(--text-secondary)'
|
1226 |
+
}},
|
1227 |
+
grid: {{
|
1228 |
+
color: 'var(--border-color)'
|
1229 |
+
}}
|
1230 |
+
}},
|
1231 |
+
y: {{
|
1232 |
+
beginAtZero: true,
|
1233 |
+
ticks: {{
|
1234 |
+
color: 'var(--text-secondary)'
|
1235 |
+
}},
|
1236 |
+
grid: {{
|
1237 |
+
color: 'var(--border-color)'
|
1238 |
+
}}
|
1239 |
+
}}
|
1240 |
+
}}
|
1241 |
+
}}
|
1242 |
}});
|
1243 |
</script>
|
1244 |
</body>
|
1245 |
</html>
|
1246 |
"""
|
1247 |
+
return html_content
|
1248 |
+
|
1249 |
+
@app.get("/usage/page", response_class=HTMLResponse)
|
1250 |
+
async def usage_page(days: int = 7):
|
1251 |
+
"""
|
1252 |
+
Serves a detailed HTML page with usage statistics and charts.
|
1253 |
+
The 'days' query parameter can be used to specify the reporting period for charts.
|
1254 |
+
"""
|
1255 |
+
usage_data = usage_tracker.get_usage_summary(days=days)
|
1256 |
+
html_content = generate_usage_html(usage_data)
|
1257 |
+
return HTMLResponse(content=html_content)
|
1258 |
+
|
1259 |
+
@app.get("/meme")
|
1260 |
+
async def get_meme():
|
1261 |
+
"""
|
1262 |
+
Fetches a random meme from meme-api.com and streams the image content.
|
1263 |
+
Handles potential errors during fetching.
|
1264 |
+
"""
|
1265 |
+
try:
|
1266 |
+
client = get_async_client()
|
1267 |
+
response = await client.get("[https://meme-api.com/gimme](https://meme-api.com/gimme)")
|
1268 |
+
response.raise_for_status() # Raise an exception for bad status codes
|
1269 |
+
response_data = response.json()
|
1270 |
+
|
1271 |
+
meme_url = response_data.get("url")
|
1272 |
+
if not meme_url:
|
1273 |
+
raise HTTPException(status_code=404, detail="No meme URL found in response.")
|
1274 |
+
|
1275 |
+
# Stream the image content back to the client
|
1276 |
+
image_response = await client.get(meme_url, follow_redirects=True)
|
1277 |
+
image_response.raise_for_status()
|
1278 |
+
|
1279 |
+
async def stream_with_larger_chunks():
|
1280 |
+
"""Streams binary data in larger chunks for efficiency."""
|
1281 |
+
chunks = []
|
1282 |
+
size = 0
|
1283 |
+
# Define a larger chunk size for better streaming performance
|
1284 |
+
chunk_size = 65536 # 64 KB
|
1285 |
+
async for chunk in image_response.aiter_bytes(chunk_size=chunk_size):
|
1286 |
+
chunks.append(chunk)
|
1287 |
+
size += len(chunk)
|
1288 |
+
if size >= chunk_size * 2: # Send chunks when accumulated size is significant
|
1289 |
+
yield b''.join(chunks)
|
1290 |
+
chunks = []
|
1291 |
+
size = 0
|
1292 |
+
if chunks: # Yield any remaining chunks
|
1293 |
+
yield b''.join(chunks)
|
1294 |
+
|
1295 |
+
return StreamingResponse(
|
1296 |
+
stream_with_larger_chunks(),
|
1297 |
+
media_type=image_response.headers.get("content-type", "image/png"), # Fallback to png
|
1298 |
+
headers={'Cache-Control': 'max-age=3600'} # Cache memes for 1 hour
|
1299 |
+
)
|
1300 |
+
except httpx.HTTPStatusError as e:
|
1301 |
+
print(f"Error fetching meme from upstream: {e.response.status_code} - {e.response.text}")
|
1302 |
+
raise HTTPException(status_code=e.response.status_code, detail=f"Failed to fetch meme: {e.response.text}")
|
1303 |
+
except httpx.RequestError as e:
|
1304 |
+
print(f"Request error fetching meme: {e}")
|
1305 |
+
raise HTTPException(status_code=502, detail=f"Could not connect to meme service: {e}")
|
1306 |
+
except Exception as e:
|
1307 |
+
print(f"An unexpected error occurred while getting meme: {e}")
|
1308 |
+
raise HTTPException(status_code=500, detail="Failed to retrieve meme due to an unexpected error.")
|
1309 |
+
|
1310 |
+
def load_model_ids(json_file_path: str) -> List[str]:
|
1311 |
+
"""
|
1312 |
+
Loads model IDs from a JSON file.
|
1313 |
+
This helps in dynamically determining available models.
|
1314 |
+
"""
|
1315 |
+
try:
|
1316 |
+
with open(json_file_path, 'r') as f:
|
1317 |
+
models_data = json.load(f)
|
1318 |
+
return [model['id'] for model in models_data if 'id' in model]
|
1319 |
+
except Exception as e:
|
1320 |
+
print(f"Error loading model IDs from {json_file_path}: {str(e)}")
|
1321 |
+
return []
|
1322 |
+
|
1323 |
+
@app.on_event("startup")
|
1324 |
+
async def startup_event():
|
1325 |
+
"""
|
1326 |
+
Actions to perform on application startup:
|
1327 |
+
- Load available model IDs.
|
1328 |
+
- Initialize scraper pool.
|
1329 |
+
- Check for missing environment variables and issue warnings.
|
1330 |
+
"""
|
1331 |
+
global available_model_ids
|
1332 |
+
# Load models from a local models.json file first
|
1333 |
+
available_model_ids = load_model_ids("models.json")
|
1334 |
+
print(f"Loaded {len(available_model_ids)} model IDs from models.json")
|
1335 |
+
|
1336 |
+
# Extend with hardcoded model lists for various providers
|
1337 |
+
available_model_ids.extend(list(pollinations_models))
|
1338 |
+
available_model_ids.extend(list(alternate_models))
|
1339 |
+
available_model_ids.extend(list(mistral_models))
|
1340 |
+
available_model_ids.extend(list(claude_3_models))
|
1341 |
+
available_model_ids.extend(list(gemini_models)) # Add Gemini models explicitly
|
1342 |
+
|
1343 |
+
# Remove duplicates and store as a set for faster lookups
|
1344 |
+
available_model_ids = list(set(available_model_ids))
|
1345 |
+
print(f"Total unique available models after merging: {len(available_model_ids)}")
|
1346 |
+
|
1347 |
+
# Initialize scraper pool
|
1348 |
+
for _ in range(MAX_SCRAPERS):
|
1349 |
+
scraper_pool.append(cloudscraper.create_scraper())
|
1350 |
+
print(f"Initialized Cloudscraper pool with {MAX_SCRAPERS} instances.")
|
1351 |
+
|
1352 |
+
# Environment variable check for critical services
|
1353 |
+
env_vars = get_env_vars()
|
1354 |
+
missing_vars = []
|
1355 |
+
|
1356 |
+
if not env_vars['api_keys'] or env_vars['api_keys'] == ['']:
|
1357 |
+
missing_vars.append('API_KEYS')
|
1358 |
+
if not env_vars['secret_api_endpoint']:
|
1359 |
+
missing_vars.append('SECRET_API_ENDPOINT')
|
1360 |
+
if not env_vars['secret_api_endpoint_2']:
|
1361 |
+
missing_vars.append('SECRET_API_ENDPOINT_2')
|
1362 |
+
if not env_vars['secret_api_endpoint_3']:
|
1363 |
+
missing_vars.append('SECRET_API_ENDPOINT_3')
|
1364 |
+
if not env_vars['secret_api_endpoint_4'] and any(model in pollinations_models for model in available_model_ids):
|
1365 |
+
missing_vars.append('SECRET_API_ENDPOINT_4 (Pollinations.ai)')
|
1366 |
+
if not env_vars['secret_api_endpoint_5'] and any(model in claude_3_models for model in available_model_ids):
|
1367 |
+
missing_vars.append('SECRET_API_ENDPOINT_5 (Claude 3.x)')
|
1368 |
+
if not env_vars['secret_api_endpoint_6'] and any(model in gemini_models for model in available_model_ids):
|
1369 |
+
missing_vars.append('SECRET_API_ENDPOINT_6 (Gemini)')
|
1370 |
+
if not env_vars['mistral_api'] and any(model in mistral_models for model in available_model_ids):
|
1371 |
+
missing_vars.append('MISTRAL_API')
|
1372 |
+
if not env_vars['mistral_key'] and any(model in mistral_models for model in available_model_ids):
|
1373 |
+
missing_vars.append('MISTRAL_KEY')
|
1374 |
+
if not env_vars['gemini_key'] and any(model in gemini_models for model in available_model_ids):
|
1375 |
+
missing_vars.append('GEMINI_KEY')
|
1376 |
+
if not env_vars['new_img'] and len(supported_image_models) > 0:
|
1377 |
+
missing_vars.append('NEW_IMG (Image Generation)')
|
1378 |
+
|
1379 |
+
if missing_vars:
|
1380 |
+
print(f"WARNING: The following critical environment variables are missing or empty: {', '.join(missing_vars)}")
|
1381 |
+
print("Some server functionality (e.g., specific AI models, image generation) may be limited or unavailable.")
|
1382 |
+
else:
|
1383 |
+
print("All critical environment variables appear to be configured.")
|
1384 |
+
|
1385 |
+
print("Server started successfully!")
|
1386 |
+
|
1387 |
+
@app.on_event("shutdown")
|
1388 |
+
async def shutdown_event():
|
1389 |
+
"""
|
1390 |
+
Actions to perform on application shutdown:
|
1391 |
+
- Close HTTPX client.
|
1392 |
+
- Clear scraper pool.
|
1393 |
+
- Save usage data to disk.
|
1394 |
+
"""
|
1395 |
+
client = get_async_client()
|
1396 |
+
await client.aclose() # Ensure the httpx client connection pool is closed
|
1397 |
+
scraper_pool.clear() # Clear the scraper pool
|
1398 |
+
usage_tracker.save_data() # Persist usage data on shutdown
|
1399 |
+
print("Server shutdown complete!")
|
1400 |
+
|
1401 |
+
@app.get("/health")
|
1402 |
+
async def health_check():
|
1403 |
+
"""
|
1404 |
+
Provides a health check endpoint, reporting server status and missing critical environment variables.
|
1405 |
+
"""
|
1406 |
+
env_vars = get_env_vars()
|
1407 |
+
missing_critical_vars = []
|
1408 |
+
|
1409 |
+
# Re-check critical environment variables for health status
|
1410 |
+
if not env_vars['api_keys'] or env_vars['api_keys'] == ['']:
|
1411 |
+
missing_critical_vars.append('API_KEYS')
|
1412 |
+
if not env_vars['secret_api_endpoint']:
|
1413 |
+
missing_critical_vars.append('SECRET_API_ENDPOINT')
|
1414 |
+
if not env_vars['secret_api_endpoint_2']:
|
1415 |
+
missing_critical_vars.append('SECRET_API_ENDPOINT_2')
|
1416 |
+
if not env_vars['secret_api_endpoint_3']:
|
1417 |
+
missing_critical_vars.append('SECRET_API_ENDPOINT_3')
|
1418 |
+
# Check for specific service endpoints only if corresponding models are configured/supported
|
1419 |
+
if not env_vars['secret_api_endpoint_4'] and any(model in pollinations_models for model in available_model_ids):
|
1420 |
+
missing_critical_vars.append('SECRET_API_ENDPOINT_4 (Pollinations.ai)')
|
1421 |
+
if not env_vars['secret_api_endpoint_5'] and any(model in claude_3_models for model in available_model_ids):
|
1422 |
+
missing_critical_vars.append('SECRET_API_ENDPOINT_5 (Claude 3.x)')
|
1423 |
+
if not env_vars['secret_api_endpoint_6'] and any(model in gemini_models for model in available_model_ids):
|
1424 |
+
missing_critical_vars.append('SECRET_API_ENDPOINT_6 (Gemini)')
|
1425 |
+
if not env_vars['mistral_api'] and any(model in mistral_models for model in available_model_ids):
|
1426 |
+
missing_critical_vars.append('MISTRAL_API')
|
1427 |
+
if not env_vars['mistral_key'] and any(model in mistral_models for model in available_model_ids):
|
1428 |
+
missing_critical_vars.append('MISTRAL_KEY')
|
1429 |
+
if not env_vars['gemini_key'] and any(model in gemini_models for model in available_model_ids):
|
1430 |
+
missing_critical_vars.append('GEMINI_KEY')
|
1431 |
+
if not env_vars['new_img'] and len(supported_image_models) > 0:
|
1432 |
+
missing_critical_vars.append('NEW_IMG (Image Generation)')
|
1433 |
+
|
1434 |
+
health_status = {
|
1435 |
+
"status": "healthy" if not missing_critical_vars else "unhealthy",
|
1436 |
+
"missing_env_vars": missing_critical_vars,
|
1437 |
+
"server_status": server_status, # Reports global server status flag
|
1438 |
+
"message": "Everything's lit! 🚀" if not missing_critical_vars else "Uh oh, some env vars are missing. 😬"
|
1439 |
+
}
|
1440 |
+
return JSONResponse(content=health_status)
|
1441 |
|
1442 |
if __name__ == "__main__":
|
1443 |
+
import uvicorn
|
1444 |
+
# When running directly, ensure startup_event is called to load models and check env vars
|
1445 |
+
# uvicorn handles startup/shutdown events automatically when run with `uvicorn.run()`
|
1446 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
1447 |
|