|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import gradio as gr |
|
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
print(f"Using device: {device}") |
|
|
|
|
|
model_path = "PKU-ML/G1-7B" |
|
print("Loading model...") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
).to(device) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
|
|
|
|
INSTRUCTION_TEMPLATE = """ |
|
{instruction} |
|
|
|
Solve the above problem efficiently and clearly. The last line of your response should be of the following format: 'Therefore, the final answer is: $\\boxed{{ANSWER}}$. I hope it is correct' (without quotes) where ANSWER is just the final number or expression that solves the problem. Think step by step before answering. |
|
""".strip() |
|
|
|
|
|
|
|
def generate_response(prompt): |
|
model.eval() |
|
|
|
messages = [ |
|
{"role": "user", "content": INSTRUCTION_TEMPLATE.format(instruction=prompt)} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=4096, |
|
top_p=0.95, |
|
top_k=30, |
|
temperature=0.6 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
return response |
|
|
|
|
|
interface = gr.Interface( |
|
fn=generate_response, |
|
inputs=[ |
|
gr.Textbox(label="Your Message", placeholder="Write your question..."), |
|
|
|
|
|
|
|
], |
|
outputs=gr.Textbox(label="Response"), |
|
title="G1", |
|
description="Ask a graph reasoning question", |
|
theme="huggingface", |
|
) |
|
|
|
if __name__ == "__main__": |
|
interface.launch() |