Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,73 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
|
4 |
-
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
5 |
|
6 |
-
def predict(input_img):
|
7 |
-
predictions = pipeline(input_img)
|
8 |
-
return input_img, {p["label"]: p["score"] for p in predictions}
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
)
|
16 |
|
17 |
if __name__ == "__main__":
|
18 |
-
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import gradio as gr
|
|
|
4 |
|
|
|
5 |
|
|
|
|
|
|
|
6 |
|
7 |
+
# GPU
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
print(f"Using device: {device}")
|
10 |
+
|
11 |
+
|
12 |
+
model_path = "PKU-ML/G1-7B"
|
13 |
+
print("Loading model...")
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
model_path,
|
16 |
+
torch_dtype="auto",
|
17 |
+
device_map="auto"
|
18 |
+
).to(device)
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
20 |
+
|
21 |
+
|
22 |
+
INSTRUCTION_TEMPLATE = """
|
23 |
+
{instruction}
|
24 |
+
|
25 |
+
Solve the above problem efficiently and clearly. The last line of your response should be of the following format: 'Therefore, the final answer is: $\\boxed{{ANSWER}}$. I hope it is correct' (without quotes) where ANSWER is just the final number or expression that solves the problem. Think step by step before answering.
|
26 |
+
""".strip()
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
def generate_response(prompt):
|
31 |
+
model.eval()
|
32 |
+
|
33 |
+
messages = [
|
34 |
+
{"role": "user", "content": INSTRUCTION_TEMPLATE.format(instruction=prompt)}
|
35 |
+
]
|
36 |
+
text = tokenizer.apply_chat_template(
|
37 |
+
messages,
|
38 |
+
tokenize=False,
|
39 |
+
add_generation_prompt=True
|
40 |
+
)
|
41 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
42 |
+
|
43 |
+
generated_ids = model.generate(
|
44 |
+
**model_inputs,
|
45 |
+
max_new_tokens=4096,
|
46 |
+
top_p=0.95,
|
47 |
+
top_k=30,
|
48 |
+
temperature=0.6
|
49 |
+
)
|
50 |
+
generated_ids = [
|
51 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
52 |
+
]
|
53 |
+
|
54 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
55 |
+
return response
|
56 |
+
|
57 |
+
|
58 |
+
interface = gr.Interface(
|
59 |
+
fn=generate_response,
|
60 |
+
inputs=[
|
61 |
+
gr.Textbox(label="Your Message", placeholder="Write your question..."),
|
62 |
+
# gr.Slider(label="Max Length", minimum=50, maximum=200, step=10, value=100),
|
63 |
+
# gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.05, value=0.65),
|
64 |
+
# gr.Slider(label="Top-p (nucleus)", minimum=0.1, maximum=1.0, step=0.05, value=0.8),
|
65 |
+
],
|
66 |
+
outputs=gr.Textbox(label="Response"),
|
67 |
+
title="G1",
|
68 |
+
description="Ask a graph reasoning question",
|
69 |
+
theme="huggingface",
|
70 |
)
|
71 |
|
72 |
if __name__ == "__main__":
|
73 |
+
interface.launch()
|