Vertex / app /routes /chat_api.py
bibibi12345's picture
smart pay prefix
2a81a94
raw
history blame
16.1 kB
import asyncio
import json # Needed for error streaming
import random
from fastapi import APIRouter, Depends, Request
from fastapi.responses import JSONResponse, StreamingResponse
from typing import List, Dict, Any
# Google and OpenAI specific imports
from google.genai import types
from google import genai
import openai
from credentials_manager import _refresh_auth
# Local module imports
from models import OpenAIRequest, OpenAIMessage
from auth import get_api_key
# from main import credential_manager # Removed to prevent circular import; accessed via request.app.state
import config as app_config
from model_loader import get_vertex_models, get_vertex_express_models # Import from model_loader
from message_processing import (
create_gemini_prompt,
create_encrypted_gemini_prompt,
create_encrypted_full_gemini_prompt
)
from api_helpers import (
create_generation_config,
create_openai_error_response,
execute_gemini_call
)
router = APIRouter()
@router.post("/v1/chat/completions")
async def chat_completions(fastapi_request: Request, request: OpenAIRequest, api_key: str = Depends(get_api_key)):
try:
credential_manager_instance = fastapi_request.app.state.credential_manager
OPENAI_DIRECT_SUFFIX = "-openai"
EXPERIMENTAL_MARKER = "-exp-"
PAY_PREFIX = "[PAY]"
# Model validation based on a predefined list has been removed as per user request.
# The application will now attempt to use any provided model string.
# We still need to fetch vertex_express_model_ids for the Express Mode logic.
vertex_express_model_ids = await get_vertex_express_models()
# Updated logic for is_openai_direct_model
is_openai_direct_model = False
if request.model.endswith(OPENAI_DIRECT_SUFFIX):
temp_name_for_marker_check = request.model[:-len(OPENAI_DIRECT_SUFFIX)]
if temp_name_for_marker_check.startswith(PAY_PREFIX):
is_openai_direct_model = True
elif EXPERIMENTAL_MARKER in temp_name_for_marker_check:
is_openai_direct_model = True
is_auto_model = request.model.endswith("-auto")
is_grounded_search = request.model.endswith("-search")
is_encrypted_model = request.model.endswith("-encrypt")
is_encrypted_full_model = request.model.endswith("-encrypt-full")
is_nothinking_model = request.model.endswith("-nothinking")
is_max_thinking_model = request.model.endswith("-max")
base_model_name = request.model
# Determine base_model_name by stripping known suffixes
# This order matters if a model could have multiple (e.g. -encrypt-auto, though not currently a pattern)
if is_openai_direct_model:
# The general PAY_PREFIX stripper later will handle if this result starts with [PAY]
base_model_name = request.model[:-len(OPENAI_DIRECT_SUFFIX)]
elif is_auto_model: base_model_name = request.model[:-len("-auto")]
elif is_grounded_search: base_model_name = request.model[:-len("-search")]
elif is_encrypted_full_model: base_model_name = request.model[:-len("-encrypt-full")] # Must be before -encrypt
elif is_encrypted_model: base_model_name = request.model[:-len("-encrypt")]
elif is_nothinking_model: base_model_name = request.model[:-len("-nothinking")]
elif is_max_thinking_model: base_model_name = request.model[:-len("-max")]
# After all suffix stripping, if PAY_PREFIX is still at the start of base_model_name, remove it.
# This handles cases like "[PAY]model-id-search" correctly.
if base_model_name.startswith(PAY_PREFIX):
base_model_name = base_model_name[len(PAY_PREFIX):]
# Specific model variant checks (if any remain exclusive and not covered dynamically)
if is_nothinking_model and base_model_name != "gemini-2.5-flash-preview-04-17":
return JSONResponse(status_code=400, content=create_openai_error_response(400, f"Model '{request.model}' (-nothinking) is only supported for 'gemini-2.5-flash-preview-04-17'.", "invalid_request_error"))
if is_max_thinking_model and base_model_name != "gemini-2.5-flash-preview-04-17":
return JSONResponse(status_code=400, content=create_openai_error_response(400, f"Model '{request.model}' (-max) is only supported for 'gemini-2.5-flash-preview-04-17'.", "invalid_request_error"))
generation_config = create_generation_config(request)
client_to_use = None
express_api_keys_list = app_config.VERTEX_EXPRESS_API_KEY_VAL
# Use dynamically fetched express models list for this check
if express_api_keys_list and base_model_name in vertex_express_model_ids: # Check against base_model_name
indexed_keys = list(enumerate(express_api_keys_list))
random.shuffle(indexed_keys)
for original_idx, key_val in indexed_keys:
try:
client_to_use = genai.Client(vertexai=True, api_key=key_val)
print(f"INFO: Using Vertex Express Mode for model {base_model_name} with API key (original index: {original_idx}).")
break # Successfully initialized client
except Exception as e:
print(f"WARNING: Vertex Express Mode client init failed for API key (original index: {original_idx}): {e}. Trying next key if available.")
client_to_use = None # Ensure client_to_use is None if this attempt fails
if client_to_use is None:
print(f"WARNING: All {len(express_api_keys_list)} Vertex Express API key(s) failed to initialize for model {base_model_name}. Falling back.")
if client_to_use is None:
rotated_credentials, rotated_project_id = credential_manager_instance.get_random_credentials()
if rotated_credentials and rotated_project_id:
try:
client_to_use = genai.Client(vertexai=True, credentials=rotated_credentials, project=rotated_project_id, location="us-central1")
print(f"INFO: Using rotated credential for project: {rotated_project_id}")
except Exception as e:
print(f"ERROR: Rotated credential client init failed: {e}. Falling back.")
client_to_use = None
if client_to_use is None:
print("ERROR: No Vertex AI client could be initialized via Express Mode or Rotated Credentials.")
return JSONResponse(status_code=500, content=create_openai_error_response(500, "Vertex AI client not available. Ensure credentials are set up correctly (env var or files).", "server_error"))
encryption_instructions_placeholder = ["// Protocol Instructions Placeholder //"] # Actual instructions are in message_processing
if is_openai_direct_model:
print(f"INFO: Using OpenAI Direct Path for model: {request.model}")
# This mode exclusively uses rotated credentials, not express keys.
rotated_credentials, rotated_project_id = credential_manager_instance.get_random_credentials()
if not rotated_credentials or not rotated_project_id:
error_msg = "OpenAI Direct Mode requires GCP credentials, but none were available or loaded successfully."
print(f"ERROR: {error_msg}")
return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error"))
print(f"INFO: [OpenAI Direct Path] Using credentials for project: {rotated_project_id}")
gcp_token = _refresh_auth(rotated_credentials)
if not gcp_token:
error_msg = f"Failed to obtain valid GCP token for OpenAI client (Source: Credential Manager, Project: {rotated_project_id})."
print(f"ERROR: {error_msg}")
return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error"))
PROJECT_ID = rotated_project_id
LOCATION = "us-central1" # Fixed as per user confirmation
VERTEX_AI_OPENAI_ENDPOINT_URL = (
f"https://{LOCATION}-aiplatform.googleapis.com/v1beta1/"
f"projects/{PROJECT_ID}/locations/{LOCATION}/endpoints/openapi"
)
# base_model_name is already extracted (e.g., "gemini-1.5-pro-exp-v1")
UNDERLYING_MODEL_ID = f"google/{base_model_name}"
openai_client = openai.AsyncOpenAI(
base_url=VERTEX_AI_OPENAI_ENDPOINT_URL,
api_key=gcp_token, # OAuth token
)
openai_safety_settings = [
{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "OFF"},
{"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "OFF"},
{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "OFF"},
{"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "OFF"},
{"category": 'HARM_CATEGORY_CIVIC_INTEGRITY', "threshold": 'OFF'}
]
openai_params = {
"model": UNDERLYING_MODEL_ID,
"messages": [msg.model_dump(exclude_unset=True) for msg in request.messages],
"temperature": request.temperature,
"max_tokens": request.max_tokens,
"top_p": request.top_p,
"stream": request.stream,
"stop": request.stop,
"seed": request.seed,
"n": request.n,
}
openai_params = {k: v for k, v in openai_params.items() if v is not None}
openai_extra_body = {
'google': {
'safety_settings': openai_safety_settings
}
}
if request.stream:
async def openai_stream_generator():
try:
stream_response = await openai_client.chat.completions.create(
**openai_params,
extra_body=openai_extra_body
)
async for chunk in stream_response:
yield f"data: {chunk.model_dump_json()}\n\n"
yield "data: [DONE]\n\n"
except Exception as stream_error:
error_msg_stream = f"Error during OpenAI client streaming for {request.model}: {str(stream_error)}"
print(f"ERROR: {error_msg_stream}")
error_response_content = create_openai_error_response(500, error_msg_stream, "server_error")
yield f"data: {json.dumps(error_response_content)}\n\n" # Ensure json is imported
yield "data: [DONE]\n\n"
return StreamingResponse(openai_stream_generator(), media_type="text/event-stream")
else: # Not streaming
try:
response = await openai_client.chat.completions.create(
**openai_params,
extra_body=openai_extra_body
)
return JSONResponse(content=response.model_dump(exclude_unset=True))
except Exception as generate_error:
error_msg_generate = f"Error calling OpenAI client for {request.model}: {str(generate_error)}"
print(f"ERROR: {error_msg_generate}")
error_response = create_openai_error_response(500, error_msg_generate, "server_error")
return JSONResponse(status_code=500, content=error_response)
elif is_auto_model:
print(f"Processing auto model: {request.model}")
attempts = [
{"name": "base", "model": base_model_name, "prompt_func": create_gemini_prompt, "config_modifier": lambda c: c},
{"name": "encrypt", "model": base_model_name, "prompt_func": create_encrypted_gemini_prompt, "config_modifier": lambda c: {**c, "system_instruction": encryption_instructions_placeholder}},
{"name": "old_format", "model": base_model_name, "prompt_func": create_encrypted_full_gemini_prompt, "config_modifier": lambda c: c}
]
last_err = None
for attempt in attempts:
print(f"Auto-mode attempting: '{attempt['name']}' for model {attempt['model']}")
current_gen_config = attempt["config_modifier"](generation_config.copy())
try:
return await execute_gemini_call(client_to_use, attempt["model"], attempt["prompt_func"], current_gen_config, request)
except Exception as e_auto:
last_err = e_auto
print(f"Auto-attempt '{attempt['name']}' for model {attempt['model']} failed: {e_auto}")
await asyncio.sleep(1)
print(f"All auto attempts failed. Last error: {last_err}")
err_msg = f"All auto-mode attempts failed for model {request.model}. Last error: {str(last_err)}"
if not request.stream and last_err:
return JSONResponse(status_code=500, content=create_openai_error_response(500, err_msg, "server_error"))
elif request.stream:
async def final_error_stream():
err_content = create_openai_error_response(500, err_msg, "server_error")
yield f"data: {json.dumps(err_content)}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(final_error_stream(), media_type="text/event-stream")
return JSONResponse(status_code=500, content=create_openai_error_response(500, "All auto-mode attempts failed without specific error.", "server_error"))
else: # Not an auto model
current_prompt_func = create_gemini_prompt
# Determine the actual model string to call the API with (e.g., "gemini-1.5-pro-search")
api_model_string = request.model
if is_grounded_search:
search_tool = types.Tool(google_search=types.GoogleSearch())
generation_config["tools"] = [search_tool]
elif is_encrypted_model:
generation_config["system_instruction"] = encryption_instructions_placeholder
current_prompt_func = create_encrypted_gemini_prompt
elif is_encrypted_full_model:
generation_config["system_instruction"] = encryption_instructions_placeholder
current_prompt_func = create_encrypted_full_gemini_prompt
elif is_nothinking_model:
generation_config["thinking_config"] = {"thinking_budget": 0}
elif is_max_thinking_model:
generation_config["thinking_config"] = {"thinking_budget": 24576}
# For non-auto models, the 'base_model_name' might have suffix stripped.
# We should use the original 'request.model' for API call if it's a suffixed one,
# or 'base_model_name' if it's truly a base model without suffixes.
# The current logic uses 'base_model_name' for the API call in the 'else' block.
# This means if `request.model` was "gemini-1.5-pro-search", `base_model_name` becomes "gemini-1.5-pro"
# but the API call might need the full "gemini-1.5-pro-search".
# Let's use `request.model` for the API call here, and `base_model_name` for checks like Express eligibility.
return await execute_gemini_call(client_to_use, base_model_name, current_prompt_func, generation_config, request)
except Exception as e:
error_msg = f"Unexpected error in chat_completions endpoint: {str(e)}"
print(error_msg)
return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error"))