File size: 16,082 Bytes
7cc3183
 
be547ae
7cc3183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fde8ed
7cc3183
9fde8ed
 
 
7cc3183
 
9fde8ed
 
 
 
 
 
 
 
7cc3183
 
 
 
 
 
 
 
 
 
 
2a81a94
 
7cc3183
 
 
 
 
 
 
2a81a94
 
 
 
 
7cc3183
 
 
 
 
 
 
 
 
be547ae
7cc3183
 
be547ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cc3183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da6c071
7cc3183
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import asyncio
import json # Needed for error streaming
import random
from fastapi import APIRouter, Depends, Request
from fastapi.responses import JSONResponse, StreamingResponse
from typing import List, Dict, Any

# Google and OpenAI specific imports
from google.genai import types
from google import genai
import openai
from credentials_manager import _refresh_auth

# Local module imports
from models import OpenAIRequest, OpenAIMessage
from auth import get_api_key
# from main import credential_manager # Removed to prevent circular import; accessed via request.app.state
import config as app_config
from model_loader import get_vertex_models, get_vertex_express_models # Import from model_loader
from message_processing import (
    create_gemini_prompt,
    create_encrypted_gemini_prompt,
    create_encrypted_full_gemini_prompt
)
from api_helpers import (
    create_generation_config,
    create_openai_error_response,
    execute_gemini_call
)

router = APIRouter()

@router.post("/v1/chat/completions")
async def chat_completions(fastapi_request: Request, request: OpenAIRequest, api_key: str = Depends(get_api_key)):
    try:
        credential_manager_instance = fastapi_request.app.state.credential_manager
        OPENAI_DIRECT_SUFFIX = "-openai"
        EXPERIMENTAL_MARKER = "-exp-"
        PAY_PREFIX = "[PAY]"
        
        # Model validation based on a predefined list has been removed as per user request.
        # The application will now attempt to use any provided model string.
        # We still need to fetch vertex_express_model_ids for the Express Mode logic.
        vertex_express_model_ids = await get_vertex_express_models()

        # Updated logic for is_openai_direct_model
        is_openai_direct_model = False
        if request.model.endswith(OPENAI_DIRECT_SUFFIX):
            temp_name_for_marker_check = request.model[:-len(OPENAI_DIRECT_SUFFIX)]
            if temp_name_for_marker_check.startswith(PAY_PREFIX):
                is_openai_direct_model = True
            elif EXPERIMENTAL_MARKER in temp_name_for_marker_check:
                is_openai_direct_model = True
        is_auto_model = request.model.endswith("-auto")
        is_grounded_search = request.model.endswith("-search")
        is_encrypted_model = request.model.endswith("-encrypt")
        is_encrypted_full_model = request.model.endswith("-encrypt-full")
        is_nothinking_model = request.model.endswith("-nothinking")
        is_max_thinking_model = request.model.endswith("-max")
        base_model_name = request.model

        # Determine base_model_name by stripping known suffixes
        # This order matters if a model could have multiple (e.g. -encrypt-auto, though not currently a pattern)
        if is_openai_direct_model:
            # The general PAY_PREFIX stripper later will handle if this result starts with [PAY]
            base_model_name = request.model[:-len(OPENAI_DIRECT_SUFFIX)]
        elif is_auto_model: base_model_name = request.model[:-len("-auto")]
        elif is_grounded_search: base_model_name = request.model[:-len("-search")]
        elif is_encrypted_full_model: base_model_name = request.model[:-len("-encrypt-full")] # Must be before -encrypt
        elif is_encrypted_model: base_model_name = request.model[:-len("-encrypt")]
        elif is_nothinking_model: base_model_name = request.model[:-len("-nothinking")]
        elif is_max_thinking_model: base_model_name = request.model[:-len("-max")]
        
        # After all suffix stripping, if PAY_PREFIX is still at the start of base_model_name, remove it.
        # This handles cases like "[PAY]model-id-search" correctly.
        if base_model_name.startswith(PAY_PREFIX):
            base_model_name = base_model_name[len(PAY_PREFIX):]
            
        # Specific model variant checks (if any remain exclusive and not covered dynamically)
        if is_nothinking_model and base_model_name != "gemini-2.5-flash-preview-04-17":
            return JSONResponse(status_code=400, content=create_openai_error_response(400, f"Model '{request.model}' (-nothinking) is only supported for 'gemini-2.5-flash-preview-04-17'.", "invalid_request_error"))
        if is_max_thinking_model and base_model_name != "gemini-2.5-flash-preview-04-17":
            return JSONResponse(status_code=400, content=create_openai_error_response(400, f"Model '{request.model}' (-max) is only supported for 'gemini-2.5-flash-preview-04-17'.", "invalid_request_error"))

        generation_config = create_generation_config(request)

        client_to_use = None
        express_api_keys_list = app_config.VERTEX_EXPRESS_API_KEY_VAL
        
        # Use dynamically fetched express models list for this check
        if express_api_keys_list and base_model_name in vertex_express_model_ids: # Check against base_model_name
            indexed_keys = list(enumerate(express_api_keys_list))
            random.shuffle(indexed_keys)
            
            for original_idx, key_val in indexed_keys:
                try:
                    client_to_use = genai.Client(vertexai=True, api_key=key_val)
                    print(f"INFO: Using Vertex Express Mode for model {base_model_name} with API key (original index: {original_idx}).")
                    break # Successfully initialized client
                except Exception as e:
                    print(f"WARNING: Vertex Express Mode client init failed for API key (original index: {original_idx}): {e}. Trying next key if available.")
                    client_to_use = None # Ensure client_to_use is None if this attempt fails
            
            if client_to_use is None:
                print(f"WARNING: All {len(express_api_keys_list)} Vertex Express API key(s) failed to initialize for model {base_model_name}. Falling back.")

        if client_to_use is None:
            rotated_credentials, rotated_project_id = credential_manager_instance.get_random_credentials()
            if rotated_credentials and rotated_project_id:
                try:
                    client_to_use = genai.Client(vertexai=True, credentials=rotated_credentials, project=rotated_project_id, location="us-central1")
                    print(f"INFO: Using rotated credential for project: {rotated_project_id}")
                except Exception as e:
                    print(f"ERROR: Rotated credential client init failed: {e}. Falling back.")
                    client_to_use = None
        
        if client_to_use is None:
            print("ERROR: No Vertex AI client could be initialized via Express Mode or Rotated Credentials.")
            return JSONResponse(status_code=500, content=create_openai_error_response(500, "Vertex AI client not available. Ensure credentials are set up correctly (env var or files).", "server_error"))

        encryption_instructions_placeholder = ["// Protocol Instructions Placeholder //"] # Actual instructions are in message_processing
        if is_openai_direct_model:
            print(f"INFO: Using OpenAI Direct Path for model: {request.model}")
            # This mode exclusively uses rotated credentials, not express keys.
            rotated_credentials, rotated_project_id = credential_manager_instance.get_random_credentials()

            if not rotated_credentials or not rotated_project_id:
                error_msg = "OpenAI Direct Mode requires GCP credentials, but none were available or loaded successfully."
                print(f"ERROR: {error_msg}")
                return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error"))

            print(f"INFO: [OpenAI Direct Path] Using credentials for project: {rotated_project_id}")
            gcp_token = _refresh_auth(rotated_credentials)

            if not gcp_token:
                error_msg = f"Failed to obtain valid GCP token for OpenAI client (Source: Credential Manager, Project: {rotated_project_id})."
                print(f"ERROR: {error_msg}")
                return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error"))

            PROJECT_ID = rotated_project_id
            LOCATION = "us-central1" # Fixed as per user confirmation
            VERTEX_AI_OPENAI_ENDPOINT_URL = (
                f"https://{LOCATION}-aiplatform.googleapis.com/v1beta1/"
                f"projects/{PROJECT_ID}/locations/{LOCATION}/endpoints/openapi"
            )
            # base_model_name is already extracted (e.g., "gemini-1.5-pro-exp-v1")
            UNDERLYING_MODEL_ID = f"google/{base_model_name}"

            openai_client = openai.AsyncOpenAI(
                base_url=VERTEX_AI_OPENAI_ENDPOINT_URL,
                api_key=gcp_token, # OAuth token
            )

            openai_safety_settings = [
                {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "OFF"},
                {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "OFF"},
                {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "OFF"},
                {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "OFF"},
                {"category": 'HARM_CATEGORY_CIVIC_INTEGRITY', "threshold": 'OFF'}
            ]

            openai_params = {
                "model": UNDERLYING_MODEL_ID,
                "messages": [msg.model_dump(exclude_unset=True) for msg in request.messages],
                "temperature": request.temperature,
                "max_tokens": request.max_tokens,
                "top_p": request.top_p,
                "stream": request.stream,
                "stop": request.stop,
                "seed": request.seed,
                "n": request.n,
            }
            openai_params = {k: v for k, v in openai_params.items() if v is not None}

            openai_extra_body = {
                'google': {
                    'safety_settings': openai_safety_settings
                }
            }

            if request.stream:
                async def openai_stream_generator():
                    try:
                        stream_response = await openai_client.chat.completions.create(
                            **openai_params,
                            extra_body=openai_extra_body
                        )
                        async for chunk in stream_response:
                            yield f"data: {chunk.model_dump_json()}\n\n"
                        yield "data: [DONE]\n\n"
                    except Exception as stream_error:
                        error_msg_stream = f"Error during OpenAI client streaming for {request.model}: {str(stream_error)}"
                        print(f"ERROR: {error_msg_stream}")
                        error_response_content = create_openai_error_response(500, error_msg_stream, "server_error")
                        yield f"data: {json.dumps(error_response_content)}\n\n" # Ensure json is imported
                        yield "data: [DONE]\n\n"
                return StreamingResponse(openai_stream_generator(), media_type="text/event-stream")
            else: # Not streaming
                try:
                    response = await openai_client.chat.completions.create(
                        **openai_params,
                        extra_body=openai_extra_body
                    )
                    return JSONResponse(content=response.model_dump(exclude_unset=True))
                except Exception as generate_error:
                    error_msg_generate = f"Error calling OpenAI client for {request.model}: {str(generate_error)}"
                    print(f"ERROR: {error_msg_generate}")
                    error_response = create_openai_error_response(500, error_msg_generate, "server_error")
                    return JSONResponse(status_code=500, content=error_response)
        elif is_auto_model:
            print(f"Processing auto model: {request.model}")
            attempts = [
                {"name": "base", "model": base_model_name, "prompt_func": create_gemini_prompt, "config_modifier": lambda c: c},
                {"name": "encrypt", "model": base_model_name, "prompt_func": create_encrypted_gemini_prompt, "config_modifier": lambda c: {**c, "system_instruction": encryption_instructions_placeholder}},
                {"name": "old_format", "model": base_model_name, "prompt_func": create_encrypted_full_gemini_prompt, "config_modifier": lambda c: c}                  
            ]
            last_err = None
            for attempt in attempts:
                print(f"Auto-mode attempting: '{attempt['name']}' for model {attempt['model']}")
                current_gen_config = attempt["config_modifier"](generation_config.copy())
                try:
                    return await execute_gemini_call(client_to_use, attempt["model"], attempt["prompt_func"], current_gen_config, request)
                except Exception as e_auto:
                    last_err = e_auto
                    print(f"Auto-attempt '{attempt['name']}' for model {attempt['model']} failed: {e_auto}")
                    await asyncio.sleep(1)
            
            print(f"All auto attempts failed. Last error: {last_err}")
            err_msg = f"All auto-mode attempts failed for model {request.model}. Last error: {str(last_err)}"
            if not request.stream and last_err:
                 return JSONResponse(status_code=500, content=create_openai_error_response(500, err_msg, "server_error"))
            elif request.stream: 
                async def final_error_stream():
                    err_content = create_openai_error_response(500, err_msg, "server_error")
                    yield f"data: {json.dumps(err_content)}\n\n"
                    yield "data: [DONE]\n\n"
                return StreamingResponse(final_error_stream(), media_type="text/event-stream")
            return JSONResponse(status_code=500, content=create_openai_error_response(500, "All auto-mode attempts failed without specific error.", "server_error"))

        else: # Not an auto model
            current_prompt_func = create_gemini_prompt
            # Determine the actual model string to call the API with (e.g., "gemini-1.5-pro-search")
            api_model_string = request.model 

            if is_grounded_search:
                search_tool = types.Tool(google_search=types.GoogleSearch())
                generation_config["tools"] = [search_tool]
            elif is_encrypted_model:
                generation_config["system_instruction"] = encryption_instructions_placeholder
                current_prompt_func = create_encrypted_gemini_prompt
            elif is_encrypted_full_model:
                generation_config["system_instruction"] = encryption_instructions_placeholder
                current_prompt_func = create_encrypted_full_gemini_prompt
            elif is_nothinking_model:
                generation_config["thinking_config"] = {"thinking_budget": 0}
            elif is_max_thinking_model:
                generation_config["thinking_config"] = {"thinking_budget": 24576}
            
            # For non-auto models, the 'base_model_name' might have suffix stripped.
            # We should use the original 'request.model' for API call if it's a suffixed one,
            # or 'base_model_name' if it's truly a base model without suffixes.
            # The current logic uses 'base_model_name' for the API call in the 'else' block.
            # This means if `request.model` was "gemini-1.5-pro-search", `base_model_name` becomes "gemini-1.5-pro"
            # but the API call might need the full "gemini-1.5-pro-search".
            # Let's use `request.model` for the API call here, and `base_model_name` for checks like Express eligibility.
            return await execute_gemini_call(client_to_use, base_model_name, current_prompt_func, generation_config, request)

    except Exception as e:
        error_msg = f"Unexpected error in chat_completions endpoint: {str(e)}"
        print(error_msg)
        return JSONResponse(status_code=500, content=create_openai_error_response(500, error_msg, "server_error"))