|
import torch |
|
from transformers import AutoTokenizer |
|
from auto_gptq import AutoGPTQForCausalLM |
|
import gradio as gr |
|
|
|
checkpoint = "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint, use_fast=True) |
|
|
|
|
|
model = AutoGPTQForCausalLM.from_quantized( |
|
checkpoint, |
|
device="cuda:0" if torch.cuda.is_available() else "cpu", |
|
torch_dtype=torch.float32, |
|
trust_remote_code=True |
|
) |
|
|
|
|
|
def predict(message, history): |
|
prompt = f"<s>[INST] {message.strip()} [/INST]" |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
|
|
outputs = model.generate( |
|
**inputs, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.9, |
|
max_new_tokens=256, |
|
eos_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
response = decoded.split("[/INST]")[-1].strip() |
|
return response |
|
|
|
|
|
gr.ChatInterface(predict).launch(debug=True) |
|
|
|
|
|
demo.launch() |
|
|
|
|
|
|