File size: 1,092 Bytes
d12b093
 
 
 
 
2fc5937
d12b093
 
 
 
2fc5937
d12b093
 
 
2fc5937
 
d12b093
 
 
 
 
 
 
 
 
 
2fc5937
d12b093
 
 
 
 
 
 
 
 
 
2fc5937
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM
import gradio as gr

checkpoint = "TheBloke/Mistral-7B-Instruct-v0.1-GPTQ"

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(checkpoint, use_fast=True)

# Load GPTQ model correctly
model = AutoGPTQForCausalLM.from_quantized(
    checkpoint,
    device="cuda:0" if torch.cuda.is_available() else "cpu",
    torch_dtype=torch.float32,
    trust_remote_code=True
)

# Function to format prompt + generate response
def predict(message, history):
    prompt = f"<s>[INST] {message.strip()} [/INST]"
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

    outputs = model.generate(
        **inputs,
        do_sample=True,
        temperature=0.7,
        top_p=0.9,
        max_new_tokens=256,
        eos_token_id=tokenizer.eos_token_id
    )

    decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
    response = decoded.split("[/INST]")[-1].strip()
    return response

# Launch Gradio chatbot
gr.ChatInterface(predict).launch(debug=True)


demo.launch()