File size: 13,299 Bytes
bf00d99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import re
from typing import Any, Dict, List, Optional, Union

import groundingdino.datasets.transforms as T
import numpy as np
import torch
import torchvision.transforms.functional as F
from groundingdino.util.inference import load_model, predict
from PIL import Image, ImageDraw, ImageFont
from qwen_vl_utils import process_vision_info, smart_resize


class ColorGenerator:
    """A class for generating consistent colors for visualization.

    This class provides methods to generate colors either consistently for all elements
    or based on text content for better visual distinction.

    Args:
        color_type (str): Type of color generation strategy. Can be either "same" for consistent color
            or "text" for text-based color generation.
    """

    def __init__(self, color_type) -> None:
        self.color_type = color_type

        if color_type == "same":
            self.color = tuple((np.random.randint(0, 127, size=3) + 128).tolist())
        elif color_type == "text":
            np.random.seed(3396)
            self.num_colors = 300
            self.colors = np.random.randint(0, 127, size=(self.num_colors, 3)) + 128
        else:
            raise ValueError

    def get_color(self, text):
        """Get a color based on the text content or return a consistent color.

        Args:
            text (str): The text to generate color for.

        Returns:
            tuple: RGB color values as a tuple.

        Raises:
            ValueError: If color_type is not supported.
        """
        if self.color_type == "same":
            return self.color

        if self.color_type == "text":
            text_hash = hash(text)
            index = text_hash % self.num_colors
            color = tuple(self.colors[index])
            return color

        raise ValueError


def visualize(
    image_pil: Image,
    boxes,
    scores,
    labels=None,
    filter_score=-1,
    topN=900,
    font_size=15,
    draw_width: int = 6,
    draw_index: bool = True,
) -> Image:
    """Visualize bounding boxes and labels on an image.

    This function draws bounding boxes and their corresponding labels on the input image.
    It supports filtering by score, limiting the number of boxes, and customizing the
    visualization appearance.

    Args:
        image_pil (PIL.Image): The input image to draw on.
        boxes (List[List[float]]): List of bounding boxes in [x1, y1, x2, y2] format.
        scores (List[float]): Confidence scores for each bounding box.
        labels (List[str], optional): Labels for each bounding box. Defaults to None.
        filter_score (float, optional): Minimum score threshold for visualization. Defaults to -1.
        topN (int, optional): Maximum number of boxes to visualize. Defaults to 900.
        font_size (int, optional): Font size for labels. Defaults to 15.
        draw_width (int, optional): Width of bounding box lines. Defaults to 6.
        draw_index (bool, optional): Whether to draw index numbers for unlabeled boxes. Defaults to True.

    Returns:
        PIL.Image: The image with visualized bounding boxes and labels.
    """
    # Get the bounding boxes and labels from the target dictionary
    font_path = "tools/Tahoma.ttf"
    font = ImageFont.truetype(font_path, font_size)
    # Create a PIL ImageDraw object to draw on the input image
    draw = ImageDraw.Draw(image_pil)
    boxes = boxes[:topN]
    scores = scores[:topN]
    # Draw boxes and masks for each box and label in the target dictionary
    box_idx = 1
    color_generaor = ColorGenerator("text")
    if labels is None:
        labels = [""] * len(boxes)
    for box, score, label in zip(boxes, scores, labels):
        if score < filter_score:
            continue
        color = tuple(np.random.randint(0, 255, size=3).tolist())
        # Extract the box coordinates
        x0, y0, x1, y1 = box
        # rescale the box coordinates to the input image size
        x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)

        if draw_index and label is "":
            text = str(box_idx) + f" {label}"
        else:
            text = str(label)
        max_words_per_line = 10
        words = text.split()
        lines = []
        line = ""
        for word in words:
            if len(line.split()) < max_words_per_line:
                line += word + " "
            else:
                lines.append(line)
                line = word + " "
        lines.append(line)
        text = "\n".join(lines)

        draw.rectangle(
            [x0, y0, x1, y1], outline=color_generaor.get_color(text), width=draw_width
        )

        bbox = draw.textbbox((x0, y0), text, font)
        box_h = bbox[3] - bbox[1]
        box_w = bbox[2] - bbox[0]

        y0_text = y0 - box_h - (draw_width * 2)
        y1_text = y0 + draw_width
        box_idx += 1
        if y0_text < 0:
            y0_text = 0
            y1_text = y0 + 2 * draw_width + box_h
        draw.rectangle(
            [x0, y0_text, bbox[2] + draw_width * 2, y1_text],
            fill=color_generaor.get_color(text),
        )
        draw.text(
            (x0 + draw_width, y0_text),
            str(text),
            fill="black",
            font=font,
        )
    return image_pil


def compute_iou(box1, box2):
    """Compute Intersection over Union (IoU) between two bounding boxes.

    Args:
        box1 (List[float]): First bounding box in [x1, y1, x2, y2] format.
        box2 (List[float]): Second bounding box in [x1, y1, x2, y2] format.

    Returns:
        float: IoU score between 0 and 1.
    """
    x1 = max(box1[0], box2[0])
    y1 = max(box1[1], box2[1])
    x2 = min(box1[2], box2[2])
    y2 = min(box1[3], box2[3])

    inter_area = max(0, x2 - x1) * max(0, y2 - y1)
    if inter_area == 0:
        return 0.0

    box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
    box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])

    union_area = box1_area + box2_area - inter_area
    return inter_area / union_area


def return_maximum_overlap(gt_box, candidate_boxes, min_iou=0.5):
    """Find the best matching box from candidate boxes based on IoU.

    Args:
        gt_box (List[float]): Ground truth bounding box in [x1, y1, x2, y2] format.
        candidate_boxes (List[List[float]]): List of candidate bounding boxes.
        min_iou (float, optional): Minimum IoU threshold for matching. Defaults to 0.5.

    Returns:
        int or None: Index of the best matching box if IoU > min_iou, None otherwise.
    """
    max_iou = 0.0
    best_box = None
    for i, box in enumerate(candidate_boxes):
        iou = compute_iou(gt_box, box)
        if iou >= min_iou and iou > max_iou:
            max_iou = iou
            best_box = i
    return best_box


def find_best_matched_index(group1, group2):
    """Find the best matching indices between two groups of bounding boxes.

    Args:
        group1 (List[List[float]]): First group of bounding boxes.
        group2 (List[List[float]]): Second group of bounding boxes.

    Returns:
        List[int]: List of indices (1-based) indicating the best matches from group2 for each box in group1.
    """
    labels = []
    for box in group1:
        best_box = return_maximum_overlap(box, group2)
        labels.append(best_box + 1)
    return labels


def gdino_load_image(image: Union[str, Image.Image]) -> torch.Tensor:
    """Load and transform image for Grounding DINO model.

    Args:
        image (Union[str, Image.Image]): Input image path or PIL Image.

    Returns:
        torch.Tensor: Transformed image tensor ready for model input.
    """
    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    if isinstance(image, str):
        image_source = Image.open(image).convert("RGB")
    else:
        image_source = image
    image = np.asarray(image_source)
    image_transformed, _ = transform(image_source, None)
    return image_transformed


def inference_gdino(
    image: Image.Image,
    prompts: List[str],
    gdino_model: Any,
    TEXT_TRESHOLD: float = 0.25,
    BOX_TRESHOLD: float = 0.25,
) -> torch.Tensor:
    """Process an image with Grounding DINO model to detect objects.

    Args:
        image (Image.Image): Input PIL image.
        prompts (List[str]): List of text prompts for object detection.
        gdino_model (Any): The Grounding DINO model instance.
        TEXT_TRESHOLD (float, optional): Text confidence threshold. Defaults to 0.25.
        BOX_TRESHOLD (float, optional): Box confidence threshold. Defaults to 0.35.

    Returns:
        List[List[float]]: List of detected bounding boxes in [x1, y1, x2, y2] format.
    """
    text_labels = ".".join(prompts)
    image_transformed = gdino_load_image(image)
    boxes, _, _ = predict(
        model=gdino_model,
        image=image_transformed,
        caption=text_labels,
        box_threshold=BOX_TRESHOLD,
        text_threshold=TEXT_TRESHOLD,
    )
    # the output boxes is in the format of (x,y,w,h), in [0,1]
    boxes = boxes * torch.tensor([image.width, image.height, image.width, image.height])
    # convert to the format of (x1,y1,x2,y2)
    boxes = torch.cat(
        (boxes[:, :2] - boxes[:, 2:4] / 2, boxes[:, :2] + boxes[:, 2:4] / 2), dim=1
    )
    return boxes.tolist()


def convert_boxes_from_absolute_to_qwen25_format(gt_boxes, ori_width, ori_height):
    """Convert bounding boxes from absolute coordinates to Qwen-25 format.

    This function resizes bounding boxes according to Qwen-25's requirements while
    maintaining aspect ratio and pixel constraints.

    Args:
        gt_boxes (List[List[float]]): List of bounding boxes in absolute coordinates.
        ori_width (int): Original image width.
        ori_height (int): Original image height.

    Returns:
        List[List[int]]: Resized bounding boxes in Qwen-25 format.
    """
    resized_height, resized_width = smart_resize(
        ori_height,
        ori_width,
        28,
        min_pixels=16 * 28 * 28,
        max_pixels=1280 * 28 * 28,
    )
    resized_gt_boxes = []
    for box in gt_boxes:
        # resize the box
        x0, y0, x1, y1 = box
        x0 = int(x0 / ori_width * resized_width)
        x1 = int(x1 / ori_width * resized_width)
        y0 = int(y0 / ori_height * resized_height)
        y1 = int(y1 / ori_height * resized_height)

        x0 = max(0, min(x0, resized_width - 1))
        y0 = max(0, min(y0, resized_height - 1))
        x1 = max(0, min(x1, resized_width - 1))
        y1 = max(0, min(y1, resized_height - 1))
        resized_gt_boxes.append([x0, y0, x1, y1])
    return resized_gt_boxes


def parse_json(json_output):
    """Parse JSON string containing coordinate arrays.

    Args:
        json_output (str): JSON string containing coordinate arrays.

    Returns:
        List[List[float]]: List of parsed coordinate arrays.
    """
    pattern = r"\[([0-9\.]+(?:, ?[0-9\.]+)*)\]"

    matches = re.findall(pattern, json_output)
    coordinates = [
        [float(num) if "." in num else int(num) for num in match.split(",")]
        for match in matches
    ]

    return coordinates


def postprocess_and_vis_inference_out(
    target_image,
    answer,
    proposed_box,
    gdino_boxes,
    font_size,
    draw_width,
    input_height,
    input_width,
):
    """Post-process inference results and create visualization.

    This function processes the model output, matches boxes with Grounding DINO results,
    and creates visualization images.

    Args:
        target_image (PIL.Image): Target image for visualization.
        answer (str): Model output containing box coordinates.
        proposed_box (List[List[float]] or None): Proposed bounding boxes.
        gdino_boxes (List[List[float]]): Grounding DINO detected boxes.
        font_size (int): Font size for visualization.
        draw_width (int): Line width for visualization.
        input_height (int): Original input image height.
        input_width (int): Original input image width.

    Returns:
        Tuple[PIL.Image, PIL.Image]: Two visualization images - one for reference boxes
            and one for Grounding DINO boxes.
    """
    if proposed_box is None:
        return target_image, target_image

    w, h = target_image.size
    json_output = parse_json(answer)
    final_boxes = []
    input_height = input_height.item()
    input_width = input_width.item()
    for box in json_output:
        x0, y0, x1, y1 = box
        x0 = x0 / input_width * w
        y0 = y0 / input_height * h
        x1 = x1 / input_width * w
        y1 = y1 / input_height * h

        final_boxes.append([x0, y0, x1, y1])

    ref_labels = find_best_matched_index(
        final_boxes, gdino_boxes
    )  # find the best matched index

    print("ref_labels", ref_labels)
    ref_vis_result = visualize(
        target_image.copy(),
        final_boxes,
        np.ones(len(final_boxes)),
        labels=ref_labels,
        font_size=font_size,
        draw_width=draw_width,
    )
    dinox_vis_result = visualize(
        target_image.copy(),
        gdino_boxes,
        np.ones(len(gdino_boxes)),
        font_size=font_size,
        draw_width=draw_width,
    )
    return ref_vis_result, dinox_vis_result