Spaces:
Running
on
Zero
Running
on
Zero
Upload 3 files
Browse files- .gitattributes +1 -0
- tools/Tahoma.ttf +3 -0
- tools/inference_tools.py +406 -0
- tools/visualize_humanref_cot.py +238 -0
.gitattributes
CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
groundingdino/_C.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
groundingdino/_C.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tools/Tahoma.ttf filter=lfs diff=lfs merge=lfs -text
|
tools/Tahoma.ttf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:359413e76969fc8a03e0acf91b355a98bb13c42472614e54bff5c8e4f4817fbb
|
3 |
+
size 681120
|
tools/inference_tools.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import Any, Dict, List, Optional, Union
|
3 |
+
|
4 |
+
import groundingdino.datasets.transforms as T
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torchvision.transforms.functional as F
|
8 |
+
from groundingdino.util.inference import load_model, predict
|
9 |
+
from PIL import Image, ImageDraw, ImageFont
|
10 |
+
from qwen_vl_utils import process_vision_info, smart_resize
|
11 |
+
|
12 |
+
|
13 |
+
class ColorGenerator:
|
14 |
+
"""A class for generating consistent colors for visualization.
|
15 |
+
|
16 |
+
This class provides methods to generate colors either consistently for all elements
|
17 |
+
or based on text content for better visual distinction.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
color_type (str): Type of color generation strategy. Can be either "same" for consistent color
|
21 |
+
or "text" for text-based color generation.
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(self, color_type) -> None:
|
25 |
+
self.color_type = color_type
|
26 |
+
|
27 |
+
if color_type == "same":
|
28 |
+
self.color = tuple((np.random.randint(0, 127, size=3) + 128).tolist())
|
29 |
+
elif color_type == "text":
|
30 |
+
np.random.seed(3396)
|
31 |
+
self.num_colors = 300
|
32 |
+
self.colors = np.random.randint(0, 127, size=(self.num_colors, 3)) + 128
|
33 |
+
else:
|
34 |
+
raise ValueError
|
35 |
+
|
36 |
+
def get_color(self, text):
|
37 |
+
"""Get a color based on the text content or return a consistent color.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
text (str): The text to generate color for.
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
tuple: RGB color values as a tuple.
|
44 |
+
|
45 |
+
Raises:
|
46 |
+
ValueError: If color_type is not supported.
|
47 |
+
"""
|
48 |
+
if self.color_type == "same":
|
49 |
+
return self.color
|
50 |
+
|
51 |
+
if self.color_type == "text":
|
52 |
+
text_hash = hash(text)
|
53 |
+
index = text_hash % self.num_colors
|
54 |
+
color = tuple(self.colors[index])
|
55 |
+
return color
|
56 |
+
|
57 |
+
raise ValueError
|
58 |
+
|
59 |
+
|
60 |
+
def visualize(
|
61 |
+
image_pil: Image,
|
62 |
+
boxes,
|
63 |
+
scores,
|
64 |
+
labels=None,
|
65 |
+
filter_score=-1,
|
66 |
+
topN=900,
|
67 |
+
font_size=15,
|
68 |
+
draw_width: int = 6,
|
69 |
+
draw_index: bool = True,
|
70 |
+
) -> Image:
|
71 |
+
"""Visualize bounding boxes and labels on an image.
|
72 |
+
|
73 |
+
This function draws bounding boxes and their corresponding labels on the input image.
|
74 |
+
It supports filtering by score, limiting the number of boxes, and customizing the
|
75 |
+
visualization appearance.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
image_pil (PIL.Image): The input image to draw on.
|
79 |
+
boxes (List[List[float]]): List of bounding boxes in [x1, y1, x2, y2] format.
|
80 |
+
scores (List[float]): Confidence scores for each bounding box.
|
81 |
+
labels (List[str], optional): Labels for each bounding box. Defaults to None.
|
82 |
+
filter_score (float, optional): Minimum score threshold for visualization. Defaults to -1.
|
83 |
+
topN (int, optional): Maximum number of boxes to visualize. Defaults to 900.
|
84 |
+
font_size (int, optional): Font size for labels. Defaults to 15.
|
85 |
+
draw_width (int, optional): Width of bounding box lines. Defaults to 6.
|
86 |
+
draw_index (bool, optional): Whether to draw index numbers for unlabeled boxes. Defaults to True.
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
PIL.Image: The image with visualized bounding boxes and labels.
|
90 |
+
"""
|
91 |
+
# Get the bounding boxes and labels from the target dictionary
|
92 |
+
font_path = "tools/Tahoma.ttf"
|
93 |
+
font = ImageFont.truetype(font_path, font_size)
|
94 |
+
# Create a PIL ImageDraw object to draw on the input image
|
95 |
+
draw = ImageDraw.Draw(image_pil)
|
96 |
+
boxes = boxes[:topN]
|
97 |
+
scores = scores[:topN]
|
98 |
+
# Draw boxes and masks for each box and label in the target dictionary
|
99 |
+
box_idx = 1
|
100 |
+
color_generaor = ColorGenerator("text")
|
101 |
+
if labels is None:
|
102 |
+
labels = [""] * len(boxes)
|
103 |
+
for box, score, label in zip(boxes, scores, labels):
|
104 |
+
if score < filter_score:
|
105 |
+
continue
|
106 |
+
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
107 |
+
# Extract the box coordinates
|
108 |
+
x0, y0, x1, y1 = box
|
109 |
+
# rescale the box coordinates to the input image size
|
110 |
+
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
|
111 |
+
|
112 |
+
if draw_index and label is "":
|
113 |
+
text = str(box_idx) + f" {label}"
|
114 |
+
else:
|
115 |
+
text = str(label)
|
116 |
+
max_words_per_line = 10
|
117 |
+
words = text.split()
|
118 |
+
lines = []
|
119 |
+
line = ""
|
120 |
+
for word in words:
|
121 |
+
if len(line.split()) < max_words_per_line:
|
122 |
+
line += word + " "
|
123 |
+
else:
|
124 |
+
lines.append(line)
|
125 |
+
line = word + " "
|
126 |
+
lines.append(line)
|
127 |
+
text = "\n".join(lines)
|
128 |
+
|
129 |
+
draw.rectangle(
|
130 |
+
[x0, y0, x1, y1], outline=color_generaor.get_color(text), width=draw_width
|
131 |
+
)
|
132 |
+
|
133 |
+
bbox = draw.textbbox((x0, y0), text, font)
|
134 |
+
box_h = bbox[3] - bbox[1]
|
135 |
+
box_w = bbox[2] - bbox[0]
|
136 |
+
|
137 |
+
y0_text = y0 - box_h - (draw_width * 2)
|
138 |
+
y1_text = y0 + draw_width
|
139 |
+
box_idx += 1
|
140 |
+
if y0_text < 0:
|
141 |
+
y0_text = 0
|
142 |
+
y1_text = y0 + 2 * draw_width + box_h
|
143 |
+
draw.rectangle(
|
144 |
+
[x0, y0_text, bbox[2] + draw_width * 2, y1_text],
|
145 |
+
fill=color_generaor.get_color(text),
|
146 |
+
)
|
147 |
+
draw.text(
|
148 |
+
(x0 + draw_width, y0_text),
|
149 |
+
str(text),
|
150 |
+
fill="black",
|
151 |
+
font=font,
|
152 |
+
)
|
153 |
+
return image_pil
|
154 |
+
|
155 |
+
|
156 |
+
def compute_iou(box1, box2):
|
157 |
+
"""Compute Intersection over Union (IoU) between two bounding boxes.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
box1 (List[float]): First bounding box in [x1, y1, x2, y2] format.
|
161 |
+
box2 (List[float]): Second bounding box in [x1, y1, x2, y2] format.
|
162 |
+
|
163 |
+
Returns:
|
164 |
+
float: IoU score between 0 and 1.
|
165 |
+
"""
|
166 |
+
x1 = max(box1[0], box2[0])
|
167 |
+
y1 = max(box1[1], box2[1])
|
168 |
+
x2 = min(box1[2], box2[2])
|
169 |
+
y2 = min(box1[3], box2[3])
|
170 |
+
|
171 |
+
inter_area = max(0, x2 - x1) * max(0, y2 - y1)
|
172 |
+
if inter_area == 0:
|
173 |
+
return 0.0
|
174 |
+
|
175 |
+
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
176 |
+
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
177 |
+
|
178 |
+
union_area = box1_area + box2_area - inter_area
|
179 |
+
return inter_area / union_area
|
180 |
+
|
181 |
+
|
182 |
+
def return_maximum_overlap(gt_box, candidate_boxes, min_iou=0.5):
|
183 |
+
"""Find the best matching box from candidate boxes based on IoU.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
gt_box (List[float]): Ground truth bounding box in [x1, y1, x2, y2] format.
|
187 |
+
candidate_boxes (List[List[float]]): List of candidate bounding boxes.
|
188 |
+
min_iou (float, optional): Minimum IoU threshold for matching. Defaults to 0.5.
|
189 |
+
|
190 |
+
Returns:
|
191 |
+
int or None: Index of the best matching box if IoU > min_iou, None otherwise.
|
192 |
+
"""
|
193 |
+
max_iou = 0.0
|
194 |
+
best_box = None
|
195 |
+
for i, box in enumerate(candidate_boxes):
|
196 |
+
iou = compute_iou(gt_box, box)
|
197 |
+
if iou >= min_iou and iou > max_iou:
|
198 |
+
max_iou = iou
|
199 |
+
best_box = i
|
200 |
+
return best_box
|
201 |
+
|
202 |
+
|
203 |
+
def find_best_matched_index(group1, group2):
|
204 |
+
"""Find the best matching indices between two groups of bounding boxes.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
group1 (List[List[float]]): First group of bounding boxes.
|
208 |
+
group2 (List[List[float]]): Second group of bounding boxes.
|
209 |
+
|
210 |
+
Returns:
|
211 |
+
List[int]: List of indices (1-based) indicating the best matches from group2 for each box in group1.
|
212 |
+
"""
|
213 |
+
labels = []
|
214 |
+
for box in group1:
|
215 |
+
best_box = return_maximum_overlap(box, group2)
|
216 |
+
labels.append(best_box + 1)
|
217 |
+
return labels
|
218 |
+
|
219 |
+
|
220 |
+
def gdino_load_image(image: Union[str, Image.Image]) -> torch.Tensor:
|
221 |
+
"""Load and transform image for Grounding DINO model.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
image (Union[str, Image.Image]): Input image path or PIL Image.
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
torch.Tensor: Transformed image tensor ready for model input.
|
228 |
+
"""
|
229 |
+
transform = T.Compose(
|
230 |
+
[
|
231 |
+
T.RandomResize([800], max_size=1333),
|
232 |
+
T.ToTensor(),
|
233 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
234 |
+
]
|
235 |
+
)
|
236 |
+
if isinstance(image, str):
|
237 |
+
image_source = Image.open(image).convert("RGB")
|
238 |
+
else:
|
239 |
+
image_source = image
|
240 |
+
image = np.asarray(image_source)
|
241 |
+
image_transformed, _ = transform(image_source, None)
|
242 |
+
return image_transformed
|
243 |
+
|
244 |
+
|
245 |
+
def inference_gdino(
|
246 |
+
image: Image.Image,
|
247 |
+
prompts: List[str],
|
248 |
+
gdino_model: Any,
|
249 |
+
TEXT_TRESHOLD: float = 0.25,
|
250 |
+
BOX_TRESHOLD: float = 0.25,
|
251 |
+
) -> torch.Tensor:
|
252 |
+
"""Process an image with Grounding DINO model to detect objects.
|
253 |
+
|
254 |
+
Args:
|
255 |
+
image (Image.Image): Input PIL image.
|
256 |
+
prompts (List[str]): List of text prompts for object detection.
|
257 |
+
gdino_model (Any): The Grounding DINO model instance.
|
258 |
+
TEXT_TRESHOLD (float, optional): Text confidence threshold. Defaults to 0.25.
|
259 |
+
BOX_TRESHOLD (float, optional): Box confidence threshold. Defaults to 0.35.
|
260 |
+
|
261 |
+
Returns:
|
262 |
+
List[List[float]]: List of detected bounding boxes in [x1, y1, x2, y2] format.
|
263 |
+
"""
|
264 |
+
text_labels = ".".join(prompts)
|
265 |
+
image_transformed = gdino_load_image(image)
|
266 |
+
boxes, _, _ = predict(
|
267 |
+
model=gdino_model,
|
268 |
+
image=image_transformed,
|
269 |
+
caption=text_labels,
|
270 |
+
box_threshold=BOX_TRESHOLD,
|
271 |
+
text_threshold=TEXT_TRESHOLD,
|
272 |
+
)
|
273 |
+
# the output boxes is in the format of (x,y,w,h), in [0,1]
|
274 |
+
boxes = boxes * torch.tensor([image.width, image.height, image.width, image.height])
|
275 |
+
# convert to the format of (x1,y1,x2,y2)
|
276 |
+
boxes = torch.cat(
|
277 |
+
(boxes[:, :2] - boxes[:, 2:4] / 2, boxes[:, :2] + boxes[:, 2:4] / 2), dim=1
|
278 |
+
)
|
279 |
+
return boxes.tolist()
|
280 |
+
|
281 |
+
|
282 |
+
def convert_boxes_from_absolute_to_qwen25_format(gt_boxes, ori_width, ori_height):
|
283 |
+
"""Convert bounding boxes from absolute coordinates to Qwen-25 format.
|
284 |
+
|
285 |
+
This function resizes bounding boxes according to Qwen-25's requirements while
|
286 |
+
maintaining aspect ratio and pixel constraints.
|
287 |
+
|
288 |
+
Args:
|
289 |
+
gt_boxes (List[List[float]]): List of bounding boxes in absolute coordinates.
|
290 |
+
ori_width (int): Original image width.
|
291 |
+
ori_height (int): Original image height.
|
292 |
+
|
293 |
+
Returns:
|
294 |
+
List[List[int]]: Resized bounding boxes in Qwen-25 format.
|
295 |
+
"""
|
296 |
+
resized_height, resized_width = smart_resize(
|
297 |
+
ori_height,
|
298 |
+
ori_width,
|
299 |
+
28,
|
300 |
+
min_pixels=16 * 28 * 28,
|
301 |
+
max_pixels=1280 * 28 * 28,
|
302 |
+
)
|
303 |
+
resized_gt_boxes = []
|
304 |
+
for box in gt_boxes:
|
305 |
+
# resize the box
|
306 |
+
x0, y0, x1, y1 = box
|
307 |
+
x0 = int(x0 / ori_width * resized_width)
|
308 |
+
x1 = int(x1 / ori_width * resized_width)
|
309 |
+
y0 = int(y0 / ori_height * resized_height)
|
310 |
+
y1 = int(y1 / ori_height * resized_height)
|
311 |
+
|
312 |
+
x0 = max(0, min(x0, resized_width - 1))
|
313 |
+
y0 = max(0, min(y0, resized_height - 1))
|
314 |
+
x1 = max(0, min(x1, resized_width - 1))
|
315 |
+
y1 = max(0, min(y1, resized_height - 1))
|
316 |
+
resized_gt_boxes.append([x0, y0, x1, y1])
|
317 |
+
return resized_gt_boxes
|
318 |
+
|
319 |
+
|
320 |
+
def parse_json(json_output):
|
321 |
+
"""Parse JSON string containing coordinate arrays.
|
322 |
+
|
323 |
+
Args:
|
324 |
+
json_output (str): JSON string containing coordinate arrays.
|
325 |
+
|
326 |
+
Returns:
|
327 |
+
List[List[float]]: List of parsed coordinate arrays.
|
328 |
+
"""
|
329 |
+
pattern = r"\[([0-9\.]+(?:, ?[0-9\.]+)*)\]"
|
330 |
+
|
331 |
+
matches = re.findall(pattern, json_output)
|
332 |
+
coordinates = [
|
333 |
+
[float(num) if "." in num else int(num) for num in match.split(",")]
|
334 |
+
for match in matches
|
335 |
+
]
|
336 |
+
|
337 |
+
return coordinates
|
338 |
+
|
339 |
+
|
340 |
+
def postprocess_and_vis_inference_out(
|
341 |
+
target_image,
|
342 |
+
answer,
|
343 |
+
proposed_box,
|
344 |
+
gdino_boxes,
|
345 |
+
font_size,
|
346 |
+
draw_width,
|
347 |
+
input_height,
|
348 |
+
input_width,
|
349 |
+
):
|
350 |
+
"""Post-process inference results and create visualization.
|
351 |
+
|
352 |
+
This function processes the model output, matches boxes with Grounding DINO results,
|
353 |
+
and creates visualization images.
|
354 |
+
|
355 |
+
Args:
|
356 |
+
target_image (PIL.Image): Target image for visualization.
|
357 |
+
answer (str): Model output containing box coordinates.
|
358 |
+
proposed_box (List[List[float]] or None): Proposed bounding boxes.
|
359 |
+
gdino_boxes (List[List[float]]): Grounding DINO detected boxes.
|
360 |
+
font_size (int): Font size for visualization.
|
361 |
+
draw_width (int): Line width for visualization.
|
362 |
+
input_height (int): Original input image height.
|
363 |
+
input_width (int): Original input image width.
|
364 |
+
|
365 |
+
Returns:
|
366 |
+
Tuple[PIL.Image, PIL.Image]: Two visualization images - one for reference boxes
|
367 |
+
and one for Grounding DINO boxes.
|
368 |
+
"""
|
369 |
+
if proposed_box is None:
|
370 |
+
return target_image, target_image
|
371 |
+
|
372 |
+
w, h = target_image.size
|
373 |
+
json_output = parse_json(answer)
|
374 |
+
final_boxes = []
|
375 |
+
input_height = input_height.item()
|
376 |
+
input_width = input_width.item()
|
377 |
+
for box in json_output:
|
378 |
+
x0, y0, x1, y1 = box
|
379 |
+
x0 = x0 / input_width * w
|
380 |
+
y0 = y0 / input_height * h
|
381 |
+
x1 = x1 / input_width * w
|
382 |
+
y1 = y1 / input_height * h
|
383 |
+
|
384 |
+
final_boxes.append([x0, y0, x1, y1])
|
385 |
+
|
386 |
+
ref_labels = find_best_matched_index(
|
387 |
+
final_boxes, gdino_boxes
|
388 |
+
) # find the best matched index
|
389 |
+
|
390 |
+
print("ref_labels", ref_labels)
|
391 |
+
ref_vis_result = visualize(
|
392 |
+
target_image.copy(),
|
393 |
+
final_boxes,
|
394 |
+
np.ones(len(final_boxes)),
|
395 |
+
labels=ref_labels,
|
396 |
+
font_size=font_size,
|
397 |
+
draw_width=draw_width,
|
398 |
+
)
|
399 |
+
dinox_vis_result = visualize(
|
400 |
+
target_image.copy(),
|
401 |
+
gdino_boxes,
|
402 |
+
np.ones(len(gdino_boxes)),
|
403 |
+
font_size=font_size,
|
404 |
+
draw_width=draw_width,
|
405 |
+
)
|
406 |
+
return ref_vis_result, dinox_vis_result
|
tools/visualize_humanref_cot.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
from base64 import b64decode
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
import matplotlib.patches as patches
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from PIL import Image
|
11 |
+
from torch.utils.data import Dataset
|
12 |
+
|
13 |
+
|
14 |
+
def parse_args():
|
15 |
+
"""Parse command line arguments for the visualization script.
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
argparse.Namespace: Parsed command line arguments containing:
|
19 |
+
- img_tsv (str): Path to image TSV file
|
20 |
+
- ann_tsv (str): Path to annotation TSV file
|
21 |
+
- ann_lineidx (str): Path to annotation lineidx file
|
22 |
+
- idx (int): Index of the sample to visualize
|
23 |
+
- output (str): Output path for visualization image
|
24 |
+
"""
|
25 |
+
parser = argparse.ArgumentParser(
|
26 |
+
description="Visualize human reference data with reasoning process"
|
27 |
+
)
|
28 |
+
parser.add_argument(
|
29 |
+
"--img_tsv",
|
30 |
+
type=str,
|
31 |
+
default="IDEA-Research/HumanRef-CoT-45k/humanref_cot.images.tsv",
|
32 |
+
help="Path to image TSV file",
|
33 |
+
)
|
34 |
+
parser.add_argument(
|
35 |
+
"--ann_tsv",
|
36 |
+
type=str,
|
37 |
+
default="IDEA-Research/HumanRef-CoT-45k/humanref_cot.annotations.tsv",
|
38 |
+
help="Path to annotation TSV file",
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"--ann_lineidx",
|
42 |
+
type=str,
|
43 |
+
default="IDEA-Research/HumanRef-CoT-45k/humanref_cot.annotations.tsv.lineidx",
|
44 |
+
help="Path to annotation lineidx file",
|
45 |
+
)
|
46 |
+
parser.add_argument(
|
47 |
+
"--num_vis", type=int, default=50, help="number of data to visualize"
|
48 |
+
)
|
49 |
+
parser.add_argument(
|
50 |
+
"--output_dir",
|
51 |
+
type=str,
|
52 |
+
default="vis/",
|
53 |
+
help="Output path for visualization",
|
54 |
+
)
|
55 |
+
return parser.parse_args()
|
56 |
+
|
57 |
+
|
58 |
+
class TSVDataset(Dataset):
|
59 |
+
"""Dataset class for loading images and annotations from TSV files.
|
60 |
+
|
61 |
+
This dataset class handles loading of images and annotations from TSV format files,
|
62 |
+
where images are stored as base64 encoded strings and annotations are stored as JSON.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
img_tsv_file (str): Path to the TSV file containing images
|
66 |
+
ann_tsv_file (str): Path to the TSV file containing annotations
|
67 |
+
ann_lineidx_file (str): Path to the line index file for annotations
|
68 |
+
|
69 |
+
Attributes:
|
70 |
+
data (list): List of line indices for annotations
|
71 |
+
img_handle (file): File handle for image TSV file
|
72 |
+
ann_handle (file): File handle for annotation TSV file
|
73 |
+
img_tsv_file (str): Path to image TSV file
|
74 |
+
ann_tsv_file (str): Path to annotation TSV file
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(self, img_tsv_file: str, ann_tsv_file: str, ann_lineidx_file: str):
|
78 |
+
super(TSVDataset, self).__init__()
|
79 |
+
self.data = []
|
80 |
+
f = open(ann_lineidx_file)
|
81 |
+
for line in f:
|
82 |
+
self.data.append(int(line.strip()))
|
83 |
+
# shuffle(self.data)
|
84 |
+
random.shuffle(self.data)
|
85 |
+
|
86 |
+
self.img_handle = None
|
87 |
+
self.ann_handle = None
|
88 |
+
self.img_tsv_file = img_tsv_file
|
89 |
+
self.ann_tsv_file = ann_tsv_file
|
90 |
+
|
91 |
+
def __len__(self):
|
92 |
+
"""Get the total number of samples in the dataset.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
int: Number of samples in the dataset
|
96 |
+
"""
|
97 |
+
return len(self.data)
|
98 |
+
|
99 |
+
def __getitem__(self, idx):
|
100 |
+
"""Get a sample from the dataset.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
idx (int): Index of the sample to retrieve
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
tuple: (image, data_dict) where:
|
107 |
+
- image (PIL.Image): RGB image
|
108 |
+
- data_dict (dict): Dictionary containing:
|
109 |
+
- gt_boxes (list): List of bounding boxes [x0, y0, x1, y1]
|
110 |
+
- region_map (dict): Mapping from referring expressions to box indices
|
111 |
+
- think (str): Reasoning process text
|
112 |
+
"""
|
113 |
+
ann_line_idx = self.data[idx]
|
114 |
+
|
115 |
+
if self.ann_handle is None:
|
116 |
+
self.ann_handle = open(self.ann_tsv_file)
|
117 |
+
self.ann_handle.seek(ann_line_idx)
|
118 |
+
|
119 |
+
img_line_idx, ann = self.ann_handle.readline().strip().split("\t")
|
120 |
+
img_line_idx = int(img_line_idx)
|
121 |
+
if self.img_handle is None:
|
122 |
+
self.img_handle = open(self.img_tsv_file)
|
123 |
+
self.img_handle.seek(img_line_idx)
|
124 |
+
img = self.img_handle.readline().strip().split("\t")[1]
|
125 |
+
if img.startswith("b'"):
|
126 |
+
img = img[1:-1]
|
127 |
+
img = BytesIO(b64decode(img))
|
128 |
+
image = Image.open(img).convert("RGB")
|
129 |
+
data_dict = json.loads(ann)
|
130 |
+
|
131 |
+
return image, data_dict
|
132 |
+
|
133 |
+
|
134 |
+
def visualize(image, data_dict, output_path="visualization.png"):
|
135 |
+
"""Visualize an image with bounding boxes and reasoning process.
|
136 |
+
|
137 |
+
This function creates a visualization with two panels:
|
138 |
+
- Left panel: Original image with ground truth boxes (red) and answer boxes (green)
|
139 |
+
- Right panel: Reasoning process text
|
140 |
+
|
141 |
+
Args:
|
142 |
+
image (PIL.Image): Input image to visualize
|
143 |
+
data_dict (dict): Dictionary containing:
|
144 |
+
- gt_boxes (list): List of bounding boxes [x0, y0, w, h]
|
145 |
+
- region_map (dict): Mapping from referring expressions to box indices
|
146 |
+
- think (str): Reasoning process text
|
147 |
+
output_path (str, optional): Path to save the visualization. Defaults to "visualization.png".
|
148 |
+
"""
|
149 |
+
# Create figure with two subplots side by side
|
150 |
+
plt.rcParams["figure.dpi"] = 300
|
151 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
|
152 |
+
|
153 |
+
# Display image on the left subplot
|
154 |
+
ax1.imshow(image)
|
155 |
+
|
156 |
+
# Plot all ground truth boxes in red with indices
|
157 |
+
gt_boxes = data_dict.get("gt_boxes", [])
|
158 |
+
for idx, box in enumerate(gt_boxes):
|
159 |
+
x0, y0, width, height = box
|
160 |
+
|
161 |
+
# Create rectangle patch
|
162 |
+
rect = patches.Rectangle(
|
163 |
+
(x0, y0), width, height, linewidth=2, edgecolor="red", facecolor="none"
|
164 |
+
)
|
165 |
+
ax1.add_patch(rect)
|
166 |
+
|
167 |
+
# Add index number
|
168 |
+
ax1.text(
|
169 |
+
x0,
|
170 |
+
y0 - 5,
|
171 |
+
str(idx),
|
172 |
+
color="red",
|
173 |
+
fontsize=12,
|
174 |
+
bbox=dict(facecolor="white", alpha=0.7),
|
175 |
+
)
|
176 |
+
|
177 |
+
# Plot answer boxes from region_map in green
|
178 |
+
region_map = data_dict.get("region_map", {})
|
179 |
+
for referring_exp, answer_indices in region_map.items():
|
180 |
+
# Display referring expression at the top of the image
|
181 |
+
ax1.text(
|
182 |
+
10,
|
183 |
+
30,
|
184 |
+
referring_exp,
|
185 |
+
color="blue",
|
186 |
+
fontsize=12,
|
187 |
+
bbox=dict(facecolor="white", alpha=0.7),
|
188 |
+
)
|
189 |
+
|
190 |
+
# Plot answer boxes in green
|
191 |
+
for idx in answer_indices:
|
192 |
+
if idx < len(gt_boxes):
|
193 |
+
box = gt_boxes[idx]
|
194 |
+
x0, y0, width, height = box
|
195 |
+
# Create rectangle patch for answer box
|
196 |
+
rect = patches.Rectangle(
|
197 |
+
(x0, y0),
|
198 |
+
width,
|
199 |
+
height,
|
200 |
+
linewidth=3,
|
201 |
+
edgecolor="green",
|
202 |
+
facecolor="none",
|
203 |
+
)
|
204 |
+
ax1.add_patch(rect)
|
205 |
+
|
206 |
+
# Remove axis ticks from image
|
207 |
+
ax1.set_xticks([])
|
208 |
+
ax1.set_yticks([])
|
209 |
+
ax1.set_title("Image with Bounding Boxes")
|
210 |
+
|
211 |
+
# Display reasoning text on the right subplot
|
212 |
+
ax2.text(0.05, 0.95, data_dict.get("think", ""), wrap=True, fontsize=12, va="top")
|
213 |
+
ax2.set_xticks([])
|
214 |
+
ax2.set_yticks([])
|
215 |
+
ax2.set_title("Reasoning Process")
|
216 |
+
|
217 |
+
# Adjust layout and display
|
218 |
+
plt.tight_layout()
|
219 |
+
plt.savefig(output_path, dpi=300)
|
220 |
+
|
221 |
+
|
222 |
+
if __name__ == "__main__":
|
223 |
+
import argparse
|
224 |
+
|
225 |
+
# Parse arguments
|
226 |
+
args = parse_args()
|
227 |
+
|
228 |
+
# Initialize dataset
|
229 |
+
dataset = TSVDataset(args.img_tsv, args.ann_tsv, args.ann_lineidx)
|
230 |
+
|
231 |
+
vis_root = args.output_dir
|
232 |
+
os.makedirs(vis_root, exist_ok=True)
|
233 |
+
for i in range(args.num_vis):
|
234 |
+
image, data_dict = dataset[i]
|
235 |
+
# Save the visualization
|
236 |
+
output_path = os.path.join(vis_root, f"visualization_{i}.png")
|
237 |
+
visualize(image, data_dict, output_path)
|
238 |
+
print(f"Visualization saved to {output_path}")
|