Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,897 Bytes
53c0cc8 0bf31be 2ccc01b 53c0cc8 cb81a08 53c0cc8 09c1921 53c0cc8 09c1921 53c0cc8 0bf31be c862054 06274f5 c862054 b90f4fc c862054 b90f4fc c862054 7afe575 661a9c6 4fa1ace c862054 de07ff6 4fa1ace 0b63d8e 4fa1ace 0b63d8e 4fa1ace 0b63d8e 061a198 4fa1ace 061a198 0b63d8e 4fa1ace 0b63d8e 4fa1ace cb81a08 4fa1ace e9769e3 cb81a08 e9769e3 cb81a08 4fa1ace 0b63d8e 4fa1ace 0b63d8e 4fa1ace 0b63d8e 4fa1ace c862054 4fa1ace c0a0c28 c862054 c0a0c28 4fa1ace 0b63d8e c862054 061a198 53c0cc8 4fa1ace 53c0cc8 09c1921 061a198 09c1921 53c0cc8 a9aba5d 214d223 a9aba5d 214d223 a9aba5d 0b63d8e a9aba5d 0b63d8e a9aba5d 0b63d8e a9aba5d 0b63d8e a9aba5d 0b63d8e a9aba5d 53c0cc8 09c1921 53c0cc8 09c1921 53c0cc8 c862054 53c0cc8 c862054 53c0cc8 3e9c92c 53c0cc8 c862054 53c0cc8 c862054 53c0cc8 c862054 53c0cc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 |
#!/usr/bin/env python
"""
modular_graph_and_candidates.py
================================
Create **one** rich view that combines
1. The *dependency graph* between existing **modular_*.py** implementations in
π€Β Transformers (blue/π‘) **and**
2. The list of *missing* modular models (fullβred nodes) **plus** similarity
edges (fullβred links) between highlyβoverlapping modelling files β the
output of *find_modular_candidates.py* β so you can immediately spot good
refactor opportunities.
βββΒ UsageΒ βββ
```bash
python modular_graph_and_candidates.py /path/to/transformers \
--multimodal # keep only models whose modelling code mentions
# "pixel_values" β₯Β 3 times
--sim-threshold 0.5 # Jaccard cutoff (default 0.50)
--out graph.html # output HTML file name
```
Colour legend in the generated HTML:
* π‘Β **base model**Β β has modular shards *imported* by others but no parent
* π΅Β **derived modular model**Β β has a `modular_*.py` and inherits from β₯β―1 model
* π΄Β **candidate**Β β no `modular_*.py` yet (and/or very similar to another)
* red edges = highβJaccard similarity links (potential to factorise)
"""
from __future__ import annotations
import argparse
import ast
import json
import re
import tokenize
from collections import Counter, defaultdict
from itertools import combinations
from pathlib import Path
from typing import Dict, List, Set, Tuple
from sentence_transformers import SentenceTransformer, util
from tqdm import tqdm
import numpy as np
import spaces
import torch
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# CONFIG
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
SIM_DEFAULT = 0.5 # similarity threshold
PIXEL_MIN_HITS = 0 # multimodal trigger ("pixel_values")
HTML_DEFAULT = "d3_modular_graph.html"
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1) Helpers to analyse *modelling* files (for similarity & multimodal filter)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def _strip_source(code: str) -> str:
"""Remove docβstrings, comments and import lines to keep only the core code."""
code = re.sub(r'("""|\'\'\')(?:.|\n)*?\1', "", code) # docβstrings
code = re.sub(r"#.*", "", code) # # comments
return "\n".join(ln for ln in code.splitlines()
if not re.match(r"\s*(from|import)\s+", ln))
def _tokenise(code: str) -> Set[str]:
"""Extract identifiers using regex - more robust than tokenizer for malformed code."""
toks: Set[str] = set()
for match in re.finditer(r'\b[a-zA-Z_][a-zA-Z0-9_]*\b', code):
toks.add(match.group())
return toks
def build_token_bags(models_root: Path) -> Tuple[Dict[str, List[Set[str]]], Dict[str, int]]:
"""Return tokenβbags of every `modeling_*.py` plus a pixelβvalue counter."""
bags: Dict[str, List[Set[str]]] = defaultdict(list)
pixel_hits: Dict[str, int] = defaultdict(int)
for mdl_dir in sorted(p for p in models_root.iterdir() if p.is_dir()):
for py in mdl_dir.rglob("modeling_*.py"):
try:
text = py.read_text(encoding="utfβ8")
pixel_hits[mdl_dir.name] += text.count("pixel_values")
bags[mdl_dir.name].append(_tokenise(_strip_source(text)))
except Exception as e:
print(f"β οΈ Skipped {py}: {e}")
return bags, pixel_hits
def _jaccard(a: Set[str], b: Set[str]) -> float:
return 0.0 if (not a or not b) else len(a & b) / len(a | b)
def similarity_clusters(bags: Dict[str, List[Set[str]]], thr: float) -> Dict[Tuple[str,str], float]:
"""Return {(modelA, modelB): score} for pairs with Jaccard β₯ *thr*."""
largest = {m: max(ts, key=len) for m, ts in bags.items() if ts}
out: Dict[Tuple[str,str], float] = {}
for m1, m2 in combinations(sorted(largest.keys()), 2):
s = _jaccard(largest[m1], largest[m2])
if s >= thr:
out[(m1, m2)] = s
return out
@spaces.GPU
def embedding_similarity_clusters(models_root: Path, missing: List[str], thr: float) -> Dict[Tuple[str, str], float]:
model = SentenceTransformer("codesage/codesage-large-v2", device="cuda", trust_remote_code=True)
try:
cfg = model[0].auto_model.config
pos_limit = int(getattr(cfg, "n_positions", getattr(cfg, "max_position_embeddings")))
except Exception:
pos_limit = 1024
seq_len = min(pos_limit, 2048)
model.max_seq_length = seq_len
model[0].max_seq_length = seq_len
model[0].tokenizer.model_max_length = seq_len
texts = {}
for name in tqdm(missing, desc="Reading modeling files"):
if any(skip in name.lower() for skip in ["mobilebert", "lxmert"]):
print(f"Skipping {name} (causes GPU abort)")
continue
code = ""
for py in (models_root / name).rglob("modeling_*.py"):
try:
code += _strip_source(py.read_text(encoding="utf-8")) + "\n"
except Exception:
continue
texts[name] = code.strip() or " "
names = list(texts)
all_embeddings = []
print(f"Encoding embeddings for {len(names)} models...")
batch_size = 4 # keep your default
# ββ two-stage caching: temp (for resume) + permanent (for reuse) βββββββββββββ
temp_cache_path = Path("temp_embeddings.npz") # For resuming computation
final_cache_path = Path("embeddings_cache.npz") # For permanent storage
start_idx = 0
emb_dim = getattr(model, "get_sentence_embedding_dimension", lambda: 768)()
# Try to load from permanent cache first
if final_cache_path.exists():
try:
cached = np.load(final_cache_path, allow_pickle=True)
cached_names = list(cached["names"])
if names == cached_names: # Exact match - use final cache
print(f"β
Using final embeddings cache ({len(cached_names)} models)")
return compute_similarities_from_cache(thr)
except Exception as e:
print(f"β οΈ Failed to load final cache: {e}")
# Try to resume from temp cache
if temp_cache_path.exists():
try:
cached = np.load(temp_cache_path, allow_pickle=True)
cached_names = list(cached["names"])
if names[:len(cached_names)] == cached_names:
loaded = cached["embeddings"].astype(np.float32)
all_embeddings.append(loaded)
start_idx = len(cached_names)
print(f"π Resuming from temp cache: {start_idx}/{len(names)} models")
except Exception as e:
print(f"β οΈ Failed to load temp cache: {e}")
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
for i in tqdm(range(start_idx, len(names), batch_size), desc="Batches", leave=False):
batch_names = names[i:i+batch_size]
batch_texts = [texts[name] for name in batch_names]
try:
print(f"Processing batch: {batch_names}")
emb = model.encode(batch_texts, convert_to_numpy=True, show_progress_bar=False)
except Exception as e:
print(f"β οΈ GPU worker error for batch {batch_names}: {type(e).__name__}: {e}")
emb = np.zeros((len(batch_names), emb_dim), dtype=np.float32)
all_embeddings.append(emb)
# save to temp cache after each batch (for resume)
try:
cur = np.vstack(all_embeddings).astype(np.float32)
np.savez(
temp_cache_path,
embeddings=cur,
names=np.array(names[:i+len(batch_names)], dtype=object),
)
except Exception as e:
print(f"β οΈ Failed to write temp cache: {e}")
if (i - start_idx) % (3 * batch_size) == 0 and torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
print(f"π§Ή Cleared GPU cache after batch {(i - start_idx)//batch_size + 1}")
embeddings = np.vstack(all_embeddings).astype(np.float32)
norms = np.linalg.norm(embeddings, axis=1, keepdims=True) + 1e-12
embeddings = embeddings / norms
print("Computing pairwise similarities...")
sims_mat = embeddings @ embeddings.T
out = {}
matrix_size = embeddings.shape[0]
processed_names = names[:matrix_size]
for i in range(matrix_size):
for j in range(i + 1, matrix_size):
s = float(sims_mat[i, j])
if s >= thr:
out[(processed_names[i], processed_names[j])] = s
# Save to final cache when complete
try:
np.savez(final_cache_path, embeddings=embeddings, names=np.array(names, dtype=object))
print(f"πΎ Final embeddings saved to {final_cache_path}")
# Clean up temp cache
if temp_cache_path.exists():
temp_cache_path.unlink()
print(f"π§Ή Cleaned up temp cache")
except Exception as e:
print(f"β οΈ Failed to save final cache: {e}")
return out
def compute_similarities_from_cache(threshold: float) -> Dict[Tuple[str, str], float]:
"""Compute similarities from cached embeddings without reprocessing."""
embeddings_path = Path("embeddings_cache.npz")
if not embeddings_path.exists():
return {}
try:
cached = np.load(embeddings_path, allow_pickle=True)
embeddings = cached["embeddings"].astype(np.float32)
names = list(cached["names"])
# Normalize embeddings
norms = np.linalg.norm(embeddings, axis=1, keepdims=True) + 1e-12
embeddings = embeddings / norms
# Compute similarities
sims_mat = embeddings @ embeddings.T
out = {}
for i in range(len(names)):
for j in range(i + 1, len(names)):
s = float(sims_mat[i, j])
if s >= threshold:
out[(names[i], names[j])] = s
print(f"β‘ Computed {len(out)} similarities from cache (threshold: {threshold})")
return out
except Exception as e:
print(f"β οΈ Failed to compute from cache: {e}")
return {}
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2) Scan *modular_*.py* files to build an importβdependency graph
# β only **modeling_*** imports are considered (skip configuration / processing)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def modular_files(models_root: Path) -> List[Path]:
return [p for p in models_root.rglob("modular_*.py") if p.suffix == ".py"]
def dependency_graph(modular_files: List[Path], models_root: Path) -> Dict[str, List[Dict[str,str]]]:
"""Return {derived_model: [{source, imported_class}, ...]}
Only `modeling_*` imports are kept; anything coming from configuration/processing/
image* utils is ignored so the visual graph focuses strictly on modelling code.
Excludes edges to sources whose model name is not a model dir.
"""
model_names = {p.name for p in models_root.iterdir() if p.is_dir()}
deps: Dict[str, List[Dict[str,str]]] = defaultdict(list)
for fp in modular_files:
derived = fp.parent.name
try:
tree = ast.parse(fp.read_text(encoding="utfβ8"), filename=str(fp))
except Exception as e:
print(f"β οΈ AST parse failed for {fp}: {e}")
continue
for node in ast.walk(tree):
if not isinstance(node, ast.ImportFrom) or not node.module:
continue
mod = node.module
# keep only *modeling_* imports, drop anything else
if ("modeling_" not in mod or
"configuration_" in mod or
"processing_" in mod or
"image_processing" in mod or
"modeling_attn_mask_utils" in mod):
continue
parts = re.split(r"[./]", mod)
src = next((p for p in parts if p not in {"", "models", "transformers"}), "")
if not src or src == derived or src not in model_names:
continue
for alias in node.names:
deps[derived].append({"source": src, "imported_class": alias.name})
return dict(deps)
# modular_graph_and_candidates.py (top-level)
def get_missing_models(models_root: Path, multimodal: bool = False) -> Tuple[List[str], Dict[str, List[Set[str]]], Dict[str, int]]:
"""Get list of models missing modular implementations."""
bags, pix_hits = build_token_bags(models_root)
mod_files = modular_files(models_root)
models_with_modular = {p.parent.name for p in mod_files}
missing = [m for m in bags if m not in models_with_modular]
if multimodal:
missing = [m for m in missing if pix_hits[m] >= PIXEL_MIN_HITS]
return missing, bags, pix_hits
def compute_similarities(models_root: Path, missing: List[str], bags: Dict[str, List[Set[str]]],
threshold: float, sim_method: str) -> Dict[Tuple[str, str], float]:
"""Compute similarities between missing models using specified method."""
if sim_method == "jaccard":
return similarity_clusters({m: bags[m] for m in missing}, threshold)
else:
# Try to use cached embeddings first
embeddings_path = Path("embeddings_cache.npz")
if embeddings_path.exists():
cached_sims = compute_similarities_from_cache(threshold)
if cached_sims: # Cache exists and worked
return cached_sims
# Fallback to full computation
return embedding_similarity_clusters(models_root, missing, threshold)
def build_graph_json(
transformers_dir: Path,
threshold: float = SIM_DEFAULT,
multimodal: bool = False,
sim_method: str = "jaccard",
) -> dict:
"""Return the {nodes, links} dict that D3 needs."""
# Check if we can use cached embeddings only
embeddings_cache = Path("embeddings_cache.npz")
print(f"π Cache file exists: {embeddings_cache.exists()}, sim_method: {sim_method}")
if sim_method == "embedding" and embeddings_cache.exists():
try:
# Try to compute from cache without accessing repo
cached_sims = compute_similarities_from_cache(threshold)
print(f"π Got {len(cached_sims)} cached similarities")
if cached_sims:
# Create graph with cached similarities + modular dependencies
cached_data = np.load(embeddings_cache, allow_pickle=True)
missing = list(cached_data["names"])
# Still need to get modular dependencies from repo
models_root = transformers_dir / "src/transformers/models"
mod_files = modular_files(models_root)
deps = dependency_graph(mod_files, models_root)
# Build full graph structure
nodes = set(missing) # Start with cached models
links = []
# Add dependency links
for drv, lst in deps.items():
for d in lst:
links.append({
"source": d["source"],
"target": drv,
"label": f"{sum(1 for x in lst if x['source'] == d['source'])} imports",
"cand": False
})
nodes.update({d["source"], drv})
# Add similarity links
for (a, b), s in cached_sims.items():
links.append({"source": a, "target": b, "label": f"{s*100:.1f}%", "cand": True})
# Create node list with proper classification
targets = {lk["target"] for lk in links if not lk["cand"]}
sources = {lk["source"] for lk in links if not lk["cand"]}
nodelist = []
for n in sorted(nodes):
if n in missing and n not in sources and n not in targets:
cls = "cand"
elif n in sources and n not in targets:
cls = "base"
else:
cls = "derived"
nodelist.append({"id": n, "cls": cls, "sz": 1})
print(f"β‘ Built graph from cache: {len(nodelist)} nodes, {len(links)} links")
return {"nodes": nodelist, "links": links}
except Exception as e:
print(f"β οΈ Cache-only build failed: {e}, falling back to full build")
# Full build with repository access
models_root = transformers_dir / "src/transformers/models"
# Get missing models and their data
missing, bags, pix_hits = get_missing_models(models_root, multimodal)
# Build dependency graph
mod_files = modular_files(models_root)
deps = dependency_graph(mod_files, models_root)
# Compute similarities
sims = compute_similarities(models_root, missing, bags, threshold, sim_method)
# ---- assemble nodes & links ----
nodes: Set[str] = set()
links: List[dict] = []
for drv, lst in deps.items():
for d in lst:
links.append({
"source": d["source"],
"target": drv,
"label": f"{sum(1 for x in lst if x['source'] == d['source'])} imports",
"cand": False
})
nodes.update({d["source"], drv})
for (a, b), s in sims.items():
links.append({"source": a, "target": b, "label": f"{s*100:.1f}%", "cand": True})
nodes.update({a, b})
nodes.update(missing)
deg = Counter()
for lk in links:
deg[lk["source"]] += 1
deg[lk["target"]] += 1
max_deg = max(deg.values() or [1])
targets = {lk["target"] for lk in links if not lk["cand"]}
sources = {lk["source"] for lk in links if not lk["cand"]}
missing_only = [m for m in missing if m not in sources and m not in targets]
nodes.update(missing_only)
nodelist = []
for n in sorted(nodes):
if n in missing_only:
cls = "cand"
elif n in sources and n not in targets:
cls = "base"
else:
cls = "derived"
nodelist.append({"id": n, "cls": cls, "sz": 1 + 2*(deg[n]/max_deg)})
graph = {"nodes": nodelist, "links": links}
return graph
def generate_html(graph: dict) -> str:
"""Return the full HTML string with inlined CSS/JS + graph JSON."""
js = JS.replace("__GRAPH_DATA__", json.dumps(graph, separators=(",", ":")))
return HTML.replace("__CSS__", CSS).replace("__JS__", js)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3) HTML (D3.js) boilerplate β CSS + JS templates (unchanged design)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
CSS = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600&display=swap');
:root{
--bg:#ffffff;
--text:#222222;
--muted:#555555;
--outline:#ffffff;
}
@media (prefers-color-scheme: dark){
:root{
--bg:#0b0d10;
--text:#e8e8e8;
--muted:#c8c8c8;
--outline:#000000;
}
}
body{ margin:0; font-family:'Inter',Arial,sans-serif; background:var(--bg); overflow:hidden; }
svg{ width:100vw; height:100vh; }
.link{ stroke:#999; stroke-opacity:.6; }
.link.cand{ stroke:#e63946; stroke-width:2.5; }
.node-label{
fill:var(--text);
pointer-events:none;
text-anchor:middle;
font-weight:600;
paint-order:stroke fill;
stroke:var(--outline);
stroke-width:3px;
}
.link-label{
fill:var(--muted);
pointer-events:none;
text-anchor:middle;
font-size:10px;
paint-order:stroke fill;
stroke:var(--bg);
stroke-width:2px;
}
.node.base image{ width:60px; height:60px; transform:translate(-30px,-30px); }
.node.derived circle{ fill:#1f77b4; }
.node.cand circle, .node.cand path{ fill:#e63946; }
#legend{
position:fixed; top:18px; left:18px;
background:rgba(255,255,255,.92);
padding:18px 28px; border-radius:10px; border:1.5px solid #bbb;
font-size:18px; box-shadow:0 2px 8px rgba(0,0,0,.08);
}
@media (prefers-color-scheme: dark){
#legend{ background:rgba(20,22,25,.92); color:#e8e8e8; border-color:#444; }
}
"""
JS = """
function updateVisibility() {
const show = document.getElementById('toggleRed').checked;
svg.selectAll('.link.cand').style('display', show ? null : 'none');
svg.selectAll('.node.cand').style('display', show ? null : 'none');
svg.selectAll('.link-label').filter(d => d.cand).style('display', show ? null : 'none');
}
document.getElementById('toggleRed').addEventListener('change', updateVisibility);
const HF_LOGO_URI = "./static/hf-logo.svg";
const graph = __GRAPH_DATA__;
const W = innerWidth, H = innerHeight;
const svg = d3.select('#dependency').call(d3.zoom().on('zoom', e => g.attr('transform', e.transform)));
const g = svg.append('g');
const link = g.selectAll('line')
.data(graph.links)
.join('line')
.attr('class', d => d.cand ? 'link cand' : 'link');
const linkLbl = g.selectAll('text.link-label')
.data(graph.links)
.join('text')
.attr('class', 'link-label')
.text(d => d.label);
const node = g.selectAll('g.node')
.data(graph.nodes)
.join('g')
.attr('class', d => `node ${d.cls}`)
.call(d3.drag().on('start', dragStart).on('drag', dragged).on('end', dragEnd));
const baseSel = node.filter(d => d.cls === 'base');
if (HF_LOGO_URI){
baseSel.append('image').attr('href', HF_LOGO_URI);
}else{
baseSel.append('circle').attr('r', d => 22*d.sz).attr('fill', '#ffbe0b');
}
node.filter(d => d.cls !== 'base').append('circle').attr('r', d => 20*d.sz);
node.append('text').attr('class','node-label').attr('dy','-2.4em').text(d => d.id);
const sim = d3.forceSimulation(graph.nodes)
.force('link', d3.forceLink(graph.links).id(d => d.id).distance(520))
.force('charge', d3.forceManyBody().strength(-600))
.force('center', d3.forceCenter(W / 2, H / 2))
.force('collide', d3.forceCollide(d => 50));
sim.on('tick', () => {
link.attr('x1', d=>d.source.x).attr('y1', d=>d.source.y)
.attr('x2', d=>d.target.x).attr('y2', d=>d.target.y);
linkLbl.attr('x', d=> (d.source.x+d.target.x)/2)
.attr('y', d=> (d.source.y+d.target.y)/2);
node.attr('transform', d=>`translate(${d.x},${d.y})`);
});
function dragStart(e,d){ if(!e.active) sim.alphaTarget(.3).restart(); d.fx=d.x; d.fy=d.y; }
function dragged(e,d){ d.fx=e.x; d.fy=e.y; }
function dragEnd(e,d){ if(!e.active) sim.alphaTarget(0); d.fx=d.fy=null; }
"""
HTML = """
<!DOCTYPE html>
<html lang='en'><head><meta charset='UTF-8'>
<title>Transformers modular graph</title>
<style>__CSS__</style></head><body>
<div id='legend'>
π‘ base<br>π΅ modular<br>π΄ candidate<br>red edgeΒ = high embedding similarity<br><br>
<label><input type="checkbox" id="toggleRed" checked> Show candidates edges and nodes</label>
</div>
<svg id='dependency'></svg>
<script src='https://d3js.org/d3.v7.min.js'></script>
<script>__JS__</script></body></html>
"""
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# HTML writer
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def write_html(graph_data: dict, path: Path):
path.write_text(generate_html(graph_data), encoding="utf-8")
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# MAIN
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def main():
ap = argparse.ArgumentParser(description="Visualise modular dependencies + candidates")
ap.add_argument("transformers", help="Path to local π€ transformers repo root")
ap.add_argument("--multimodal", action="store_true", help="filter to models with β₯3 'pixel_values'")
ap.add_argument("--sim-threshold", type=float, default=SIM_DEFAULT)
ap.add_argument("--out", default=HTML_DEFAULT)
ap.add_argument("--sim-method", choices=["jaccard", "embedding"], default="jaccard",
help="Similarity method: 'jaccard' or 'embedding'")
args = ap.parse_args()
graph = build_graph_json(
transformers_dir=Path(args.transformers).expanduser().resolve(),
threshold=args.sim_threshold,
multimodal=args.multimodal,
sim_method=args.sim_method,
)
write_html(graph, Path(args.out).expanduser())
if __name__ == "__main__":
main()
|