Spaces:
Running
on
Zero
Running
on
Zero
recover mess
Browse files
modular_graph_and_candidates.py
CHANGED
@@ -45,7 +45,7 @@ import spaces
|
|
45 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
46 |
# CONFIG
|
47 |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
48 |
-
SIM_DEFAULT = 0.
|
49 |
PIXEL_MIN_HITS = 0 # multimodal trigger ("pixel_values")
|
50 |
HTML_DEFAULT = "d3_modular_graph.html"
|
51 |
|
@@ -126,26 +126,24 @@ def embedding_similarity_clusters(models_root: Path, missing: List[str], thr: fl
|
|
126 |
texts[name] = code.strip() or " "
|
127 |
|
128 |
names = list(texts)
|
129 |
-
names = names[:90] # Limit before processing
|
130 |
all_embeddings = []
|
131 |
|
132 |
print(f"Encoding embeddings for {len(names)} models...")
|
133 |
batch_size = 8
|
134 |
|
135 |
-
for i in tqdm(range(0, len(names), batch_size), desc="
|
136 |
-
|
137 |
-
|
138 |
|
139 |
try:
|
140 |
-
print(f"Processing
|
141 |
-
|
142 |
-
emb = model.encode(batch, convert_to_numpy=True, show_progress_bar=False)
|
143 |
all_embeddings.append(emb)
|
144 |
-
print(f"β Completed {
|
145 |
except Exception as e:
|
146 |
-
print(f"β οΈ GPU worker error for {
|
147 |
-
# Create zero
|
148 |
-
zero_emb = np.zeros((
|
149 |
all_embeddings.append(zero_emb)
|
150 |
|
151 |
embeddings = np.vstack(all_embeddings).astype(np.float32)
|
@@ -376,7 +374,7 @@ function updateVisibility() {
|
|
376 |
}
|
377 |
document.getElementById('toggleRed').addEventListener('change', updateVisibility);
|
378 |
|
379 |
-
const HF_LOGO_URI = "hf-logo.
|
380 |
const graph = __GRAPH_DATA__;
|
381 |
const W = innerWidth, H = innerHeight;
|
382 |
const svg = d3.select('#dependency').call(d3.zoom().on('zoom', e => g.attr('transform', e.transform)));
|
|
|
45 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
46 |
# CONFIG
|
47 |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
48 |
+
SIM_DEFAULT = 0.5 # similarity threshold
|
49 |
PIXEL_MIN_HITS = 0 # multimodal trigger ("pixel_values")
|
50 |
HTML_DEFAULT = "d3_modular_graph.html"
|
51 |
|
|
|
126 |
texts[name] = code.strip() or " "
|
127 |
|
128 |
names = list(texts)
|
|
|
129 |
all_embeddings = []
|
130 |
|
131 |
print(f"Encoding embeddings for {len(names)} models...")
|
132 |
batch_size = 8
|
133 |
|
134 |
+
for i in tqdm(range(0, len(names), batch_size), desc="Batches", leave=False):
|
135 |
+
batch_names = names[i:i+batch_size]
|
136 |
+
batch_texts = [texts[name] for name in batch_names]
|
137 |
|
138 |
try:
|
139 |
+
print(f"Processing batch: {batch_names}")
|
140 |
+
emb = model.encode(batch_texts, convert_to_numpy=True, show_progress_bar=False)
|
|
|
141 |
all_embeddings.append(emb)
|
142 |
+
print(f"β Completed batch of {len(batch_names)} models")
|
143 |
except Exception as e:
|
144 |
+
print(f"β οΈ GPU worker error for batch {batch_names}: {type(e).__name__}: {e}")
|
145 |
+
# Create zero embeddings for all models in failed batch
|
146 |
+
zero_emb = np.zeros((len(batch_names), model.get_sentence_embedding_dimension()), dtype=np.float32)
|
147 |
all_embeddings.append(zero_emb)
|
148 |
|
149 |
embeddings = np.vstack(all_embeddings).astype(np.float32)
|
|
|
374 |
}
|
375 |
document.getElementById('toggleRed').addEventListener('change', updateVisibility);
|
376 |
|
377 |
+
const HF_LOGO_URI = "static/hf-logo.svg";
|
378 |
const graph = __GRAPH_DATA__;
|
379 |
const W = innerWidth, H = innerHeight;
|
380 |
const svg = d3.select('#dependency').call(d3.zoom().on('zoom', e => g.attr('transform', e.transform)));
|
hf-logo.svg β static/hf-logo.svg
RENAMED
File without changes
|