Spaces:
Sleeping
Sleeping
File size: 6,690 Bytes
e388831 f92ee23 b9fe0e0 f92ee23 e388831 7b00046 debb192 7b00046 f92ee23 b9fe0e0 f92ee23 7b00046 f92ee23 7b00046 f92ee23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import streamlit as st
from docx import Document
import os
from langchain_core.prompts import PromptTemplate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import time
from sentence_transformers import SentenceTransformer
from langchain.vectorstores import Chroma
from langchain.docstore.document import Document as Document2
from langchain_community.embeddings import HuggingFaceEmbeddings
from huggingface_hub import HfFolder
# Load token from environment variable
token = os.getenv("HF_TOKEN")
# Save the token to Hugging Face's system directory
HfFolder.save_token(token)
docs_folder = "./converted_docs"
# Function to load .docx files from Google Drive folder
def load_docx_files_from_drive(drive_folder):
docx_files = [f for f in os.listdir(drive_folder) if f.endswith(".docx")]
documents = []
for file_name in docx_files:
file_path = os.path.join(drive_folder, file_name)
doc = Document(file_path)
content = "\n".join([p.text for p in doc.paragraphs if p.text.strip()])
documents.append(content)
return documents
# Load .docx files from Google Drive folder
documents = load_docx_files_from_drive(docs_folder)
def split_extracted_text_into_chunks(documents):
# List to hold all chunks
chunks = []
for doc_text in documents:
# Split the document text into lines
lines = doc_text.splitlines()
# Initialize variables for splitting
current_chunk = []
for line in lines:
# Check if the line starts with "File Name:"
if line.startswith("File Name:"):
# If there's a current chunk, save it before starting a new one
if current_chunk:
chunks.append("\n".join(current_chunk))
current_chunk = [] # Reset the current chunk
# Add the line to the current chunk
current_chunk.append(line)
# Add the last chunk for the current document
if current_chunk:
chunks.append("\n".join(current_chunk))
return chunks
# Split the extracted documents into chunks
chunks = split_extracted_text_into_chunks(documents)
def save_chunks_to_file(chunks, output_file_path):
# Open the file in write mode
with open(output_file_path, "w", encoding="utf-8") as file:
for i, chunk in enumerate(chunks, start=1):
# Write each chunk with a header for easy identification
file.write(f"Chunk {i}:\n")
file.write(chunk)
file.write("\n" + "=" * 50 + "\n")
# Path to save the chunks file
output_file_path = "./chunks_output.txt"
# Split the extracted documents into chunks
chunks = split_extracted_text_into_chunks(documents)
# Save the chunks to the file
save_chunks_to_file(chunks, output_file_path)
# Step 1: Load the model through LangChain's wrapper
embedding_model = HuggingFaceEmbeddings(
model_name="Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2"
)
# Step 2: Embed the chunks (now simplified)
def embed_chunks(chunks):
return [
{"chunk": chunk, "embedding": embedding_model.embed_query(chunk)}
for chunk in chunks
]
embeddings = embed_chunks(chunks)
# Step 3: Prepare documents (unchanged)
def prepare_documents_for_chroma(embeddings):
return [
Document2(page_content=entry["chunk"], metadata={"chunk_index": i})
for i, entry in enumerate(embeddings, start=1)
]
documents = prepare_documents_for_chroma(embeddings)
# Step 4: Create Chroma store (fixed)
vectorstore = Chroma.from_documents(
documents=documents,
embedding=embedding_model, # Proper embedding object
persist_directory="./chroma_db", # Optional persistence
)
class RAGPipeline:
def __init__(self, vectorstore, model_name="CohereForAI/aya-expanse-8b", k=6):
self.vectorstore = vectorstore
self.model_name = model_name
self.k = k
self.retriever = self.vectorstore.as_retriever(
search_type="mmr", search_kwargs={"k": self.k}
)
self.prompt_template = PromptTemplate.from_template(self._get_template())
# Load model and tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, token=token)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name, torch_dtype=torch.bfloat16, device_map="auto", token=token
)
def _get_template(self):
return """\
<s>[INST] <<SYS>>
أنت مساعد مفيد يقدم إجابات باللغة العربية بناءً على السياق المقدم.
- أجب فقط باللغة العربية
- إذا لم تجد إجابة في السياق، قل أنك لا تعرف
- كن دقيقاً وواضحاً في إجاباتك
<</SYS>>
السياق: {context}
السؤال: {question}
الإجابة: [/INST]\
"""
def generate_response(self, question):
retrieved_docs = self._retrieve_documents(question)
prompt = self._create_prompt(retrieved_docs, question)
response = self._generate_response(prompt)
return response
def _retrieve_documents(self, question):
start = time.time()
retrieved_docs = self.retriever.invoke(question)
result = {f"doc_{i}": doc.page_content for i, doc in enumerate(retrieved_docs)}
end = time.time()
time_lapsed = end - start
print(f"Time lapsed in Retreival: {time_lapsed}")
return result
def _create_prompt(self, docs, question):
return self.prompt_template.format(context=docs, question=question)
def _generate_response(self, prompt):
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
start = time.time()
outputs = self.model.generate(
inputs.input_ids,
max_new_tokens=1024,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id,
)
end = time.time()
time_lapsed = end - start
print(f"Time lapsed in Generation: {time_lapsed}")
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the assistant's response after [/INST]
return response.split("[/INST]")[-1].strip()
rag_pipeline = RAGPipeline(vectorstore)
question = st.text_area("أدخل سؤالك هنا")
if st.button("Generate Answer"):
response = rag_pipeline.generate_response(question)
st.write(response)
print("Question: ", question)
print("Response: ", response)
|