Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,13 @@ from langchain.vectorstores import Chroma
|
|
10 |
from langchain.docstore.document import Document as Document2
|
11 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
docs_folder = "./converted_docs"
|
15 |
|
@@ -130,9 +137,9 @@ class RAGPipeline:
|
|
130 |
self.prompt_template = PromptTemplate.from_template(self._get_template())
|
131 |
|
132 |
# Load model and tokenizer
|
133 |
-
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
134 |
self.model = AutoModelForCausalLM.from_pretrained(
|
135 |
-
self.model_name, torch_dtype=torch.bfloat16, device_map="auto"
|
136 |
)
|
137 |
|
138 |
def _get_template(self):
|
|
|
10 |
from langchain.docstore.document import Document as Document2
|
11 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
12 |
|
13 |
+
from huggingface_hub import HfFolder
|
14 |
+
|
15 |
+
# Load token from environment variable
|
16 |
+
token = os.getenv("token")
|
17 |
+
|
18 |
+
# Save the token to Hugging Face's system directory
|
19 |
+
HfFolder.save_token(token)
|
20 |
|
21 |
docs_folder = "./converted_docs"
|
22 |
|
|
|
137 |
self.prompt_template = PromptTemplate.from_template(self._get_template())
|
138 |
|
139 |
# Load model and tokenizer
|
140 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, token=token)
|
141 |
self.model = AutoModelForCausalLM.from_pretrained(
|
142 |
+
self.model_name, torch_dtype=torch.bfloat16, device_map="auto", token=token
|
143 |
)
|
144 |
|
145 |
def _get_template(self):
|