|
import torch |
|
import torch.nn as nn |
|
from torchvision import transforms |
|
from PIL import Image |
|
import gradio as gr |
|
|
|
|
|
class ImprovedCNN(nn.Module): |
|
def __init__(self): |
|
super(ImprovedCNN, self).__init__() |
|
self.features = nn.Sequential( |
|
nn.Conv2d(3, 32, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(32), |
|
nn.ReLU(), |
|
nn.MaxPool2d(2), |
|
|
|
nn.Conv2d(32, 64, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(), |
|
nn.MaxPool2d(2), |
|
|
|
nn.Conv2d(64, 128, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(128), |
|
nn.ReLU(), |
|
nn.MaxPool2d(2), |
|
) |
|
self.classifier = nn.Sequential( |
|
nn.Flatten(), |
|
nn.Linear(128 * 16 * 16, 512), |
|
nn.ReLU(), |
|
nn.Dropout(0.5), |
|
nn.Linear(512, 1) |
|
) |
|
|
|
def forward(self, x): |
|
x = self.features(x) |
|
x = self.classifier(x) |
|
return x |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
print(f"Using device: {device}") |
|
model = ImprovedCNN().to(device) |
|
|
|
model_path = "age_prediction_model3.pth" |
|
model.load_state_dict(torch.load(model_path, map_location=device)) |
|
model.eval() |
|
print(f"β
Model loaded from {model_path}") |
|
|
|
|
|
transform = transforms.Compose([ |
|
transforms.Resize((128, 128)), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], |
|
std=[0.229, 0.224, 0.225]) |
|
]) |
|
|
|
|
|
def predict_age(image: Image.Image) -> float: |
|
image_tensor = transform(image).unsqueeze(0).to(device) |
|
with torch.no_grad(): |
|
output = model(image_tensor) |
|
age = output.item() |
|
return round(age, 2) |
|
|
|
|
|
demo = gr.Interface( |
|
fn=predict_age, |
|
inputs=gr.Image(type="pil", image_mode="RGB", label="Upload Face Image"), |
|
outputs=gr.Number(label="Predicted Age"), |
|
title="Face Age Prediction", |
|
description="Upload a face image to predict age using a CNN model." |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|