Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision import transforms
|
4 |
+
from PIL import Image
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# -------- MODEL DEFINITION --------
|
8 |
+
class ImprovedCNN(nn.Module):
|
9 |
+
def __init__(self):
|
10 |
+
super(ImprovedCNN, self).__init__()
|
11 |
+
self.features = nn.Sequential(
|
12 |
+
nn.Conv2d(3, 32, kernel_size=3, padding=1),
|
13 |
+
nn.BatchNorm2d(32),
|
14 |
+
nn.ReLU(),
|
15 |
+
nn.MaxPool2d(2),
|
16 |
+
|
17 |
+
nn.Conv2d(32, 64, kernel_size=3, padding=1),
|
18 |
+
nn.BatchNorm2d(64),
|
19 |
+
nn.ReLU(),
|
20 |
+
nn.MaxPool2d(2),
|
21 |
+
|
22 |
+
nn.Conv2d(64, 128, kernel_size=3, padding=1),
|
23 |
+
nn.BatchNorm2d(128),
|
24 |
+
nn.ReLU(),
|
25 |
+
nn.MaxPool2d(2),
|
26 |
+
)
|
27 |
+
self.classifier = nn.Sequential(
|
28 |
+
nn.Flatten(),
|
29 |
+
nn.Linear(128 * 16 * 16, 512),
|
30 |
+
nn.ReLU(),
|
31 |
+
nn.Dropout(0.5),
|
32 |
+
nn.Linear(512, 1)
|
33 |
+
)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
x = self.features(x)
|
37 |
+
x = self.classifier(x)
|
38 |
+
return x
|
39 |
+
|
40 |
+
# -------- LOAD MODEL --------
|
41 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
42 |
+
print(f"Using device: {device}")
|
43 |
+
model = ImprovedCNN().to(device)
|
44 |
+
|
45 |
+
model_path = "age_prediction_model3.pth"
|
46 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
47 |
+
model.eval()
|
48 |
+
print(f"✅ Model loaded from {model_path}")
|
49 |
+
|
50 |
+
# -------- IMAGE PREPROCESSING --------
|
51 |
+
transform = transforms.Compose([
|
52 |
+
transforms.Resize((128, 128)),
|
53 |
+
transforms.ToTensor(),
|
54 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
55 |
+
std=[0.229, 0.224, 0.225])
|
56 |
+
])
|
57 |
+
|
58 |
+
# -------- PREDICTION FUNCTION --------
|
59 |
+
def predict_age(image: Image.Image) -> float:
|
60 |
+
image_tensor = transform(image).unsqueeze(0).to(device)
|
61 |
+
with torch.no_grad():
|
62 |
+
output = model(image_tensor)
|
63 |
+
age = output.item()
|
64 |
+
return round(age, 2)
|
65 |
+
|
66 |
+
# -------- GRADIO UI --------
|
67 |
+
demo = gr.Interface(
|
68 |
+
fn=predict_age,
|
69 |
+
inputs=gr.Image(type="pil", image_mode="RGB", label="Upload Face Image"),
|
70 |
+
outputs=gr.Number(label="Predicted Age"),
|
71 |
+
title="Face Age Prediction",
|
72 |
+
description="Upload a face image to predict age using a CNN model."
|
73 |
+
)
|
74 |
+
|
75 |
+
# -------- LAUNCH --------
|
76 |
+
if __name__ == "__main__":
|
77 |
+
demo.launch()
|