Spaces:
Runtime error
Runtime error
Update evaluate.py
Browse files- evaluate.py +11 -39
evaluate.py
CHANGED
@@ -1,45 +1,17 @@
|
|
1 |
-
from
|
2 |
-
import torch
|
3 |
-
from datasets import load_dataset
|
4 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
-
import numpy as np
|
6 |
-
|
7 |
-
def evaluate_model(model_name, dataset):
|
8 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
-
|
10 |
-
try:
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
-
model = AutoModel.from_pretrained(model_name)
|
13 |
-
model.eval()
|
14 |
-
model.to(device)
|
15 |
-
except Exception as e:
|
16 |
-
print(f"Model loading failed: {e}")
|
17 |
-
return None
|
18 |
-
|
19 |
-
embeddings1, embeddings2 = [], []
|
20 |
|
|
|
21 |
try:
|
22 |
-
|
23 |
-
inputs1 = tokenizer(item["instruction"], return_tensors="pt", truncation=True, padding=True).to(device)
|
24 |
-
inputs2 = tokenizer(item["output"], return_tensors="pt", truncation=True, padding=True).to(device)
|
25 |
-
|
26 |
-
with torch.no_grad():
|
27 |
-
embed1 = model(**inputs1).last_hidden_state[:, 0, :].cpu().numpy()
|
28 |
-
embed2 = model(**inputs2).last_hidden_state[:, 0, :].cpu().numpy()
|
29 |
-
|
30 |
-
embeddings1.append(embed1.flatten())
|
31 |
-
embeddings2.append(embed2.flatten())
|
32 |
-
|
33 |
-
sims = [cosine_similarity([e1], [e2])[0][0] for e1, e2 in zip(embeddings1, embeddings2)]
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
return None
|
42 |
|
|
|
43 |
except Exception as e:
|
44 |
print(f"Evaluation failed: {e}")
|
45 |
-
return None
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer, util
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
def evaluate_model(model_name,dataset):
|
4 |
try:
|
5 |
+
model = SentenceTransformer(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
scores = []
|
8 |
+
for row in dataset:
|
9 |
+
emb1 = model.encode(row["instruction"], convert_to_tensor=True)
|
10 |
+
emb2 = model.encode(row["output"], convert_to_tensor=True)
|
11 |
+
sim_score = float(util.cos_sim(emb1, emb2)[0])
|
12 |
+
scores.append(sim_score)
|
|
|
13 |
|
14 |
+
return sum(scores) / len(scores)
|
15 |
except Exception as e:
|
16 |
print(f"Evaluation failed: {e}")
|
17 |
+
return None
|