Spaces:
Runtime error
Runtime error
Update evaluate.py
Browse files- evaluate.py +22 -13
evaluate.py
CHANGED
@@ -4,33 +4,42 @@ from datasets import load_dataset
|
|
4 |
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
import numpy as np
|
6 |
|
7 |
-
def evaluate_model(model_name,dataset):
|
|
|
|
|
8 |
try:
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
model = AutoModel.from_pretrained(model_name)
|
11 |
model.eval()
|
12 |
-
model.to(
|
13 |
-
except:
|
|
|
14 |
return None
|
15 |
|
16 |
embeddings1, embeddings2 = [], []
|
|
|
17 |
try:
|
18 |
for item in dataset:
|
19 |
-
inputs1 = tokenizer(item["instruction"], return_tensors="pt", truncation=True, padding=True)
|
20 |
-
inputs2 = tokenizer(item["output"], return_tensors="pt", truncation=True, padding=True)
|
21 |
|
22 |
with torch.no_grad():
|
23 |
-
embed1 = model(**inputs1).last_hidden_state[:, 0, :]
|
24 |
-
embed2 = model(**inputs2).last_hidden_state[:, 0, :]
|
25 |
|
26 |
-
embeddings1.append(embed1.
|
27 |
-
embeddings2.append(embed2.
|
28 |
|
29 |
sims = [cosine_similarity([e1], [e2])[0][0] for e1, e2 in zip(embeddings1, embeddings2)]
|
30 |
-
labels = [item["similarity_score"] for item in dataset]
|
31 |
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
except Exception as e:
|
35 |
print(f"Evaluation failed: {e}")
|
36 |
-
return None
|
|
|
4 |
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
import numpy as np
|
6 |
|
7 |
+
def evaluate_model(model_name, dataset):
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
|
10 |
try:
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
model = AutoModel.from_pretrained(model_name)
|
13 |
model.eval()
|
14 |
+
model.to(device)
|
15 |
+
except Exception as e:
|
16 |
+
print(f"Model loading failed: {e}")
|
17 |
return None
|
18 |
|
19 |
embeddings1, embeddings2 = [], []
|
20 |
+
|
21 |
try:
|
22 |
for item in dataset:
|
23 |
+
inputs1 = tokenizer(item["instruction"], return_tensors="pt", truncation=True, padding=True).to(device)
|
24 |
+
inputs2 = tokenizer(item["output"], return_tensors="pt", truncation=True, padding=True).to(device)
|
25 |
|
26 |
with torch.no_grad():
|
27 |
+
embed1 = model(**inputs1).last_hidden_state[:, 0, :].cpu().numpy()
|
28 |
+
embed2 = model(**inputs2).last_hidden_state[:, 0, :].cpu().numpy()
|
29 |
|
30 |
+
embeddings1.append(embed1.flatten())
|
31 |
+
embeddings2.append(embed2.flatten())
|
32 |
|
33 |
sims = [cosine_similarity([e1], [e2])[0][0] for e1, e2 in zip(embeddings1, embeddings2)]
|
|
|
34 |
|
35 |
+
if "similarity_score" in dataset[0]:
|
36 |
+
labels = [item["similarity_score"] for item in dataset]
|
37 |
+
corr = np.corrcoef(sims, labels)[0, 1]
|
38 |
+
return float(corr)
|
39 |
+
else:
|
40 |
+
print("No similarity scores in dataset.")
|
41 |
+
return None
|
42 |
+
|
43 |
except Exception as e:
|
44 |
print(f"Evaluation failed: {e}")
|
45 |
+
return None
|