Mehrdad-S's picture
Update evaluate.py
e3adec8 verified
raw
history blame
1.63 kB
from transformers import AutoTokenizer, AutoModel
import torch
from datasets import load_dataset
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
def evaluate_model(model_name, dataset):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
model.eval()
model.to(device)
except Exception as e:
print(f"Model loading failed: {e}")
return None
embeddings1, embeddings2 = [], []
try:
for item in dataset:
inputs1 = tokenizer(item["instruction"], return_tensors="pt", truncation=True, padding=True).to(device)
inputs2 = tokenizer(item["output"], return_tensors="pt", truncation=True, padding=True).to(device)
with torch.no_grad():
embed1 = model(**inputs1).last_hidden_state[:, 0, :].cpu().numpy()
embed2 = model(**inputs2).last_hidden_state[:, 0, :].cpu().numpy()
embeddings1.append(embed1.flatten())
embeddings2.append(embed2.flatten())
sims = [cosine_similarity([e1], [e2])[0][0] for e1, e2 in zip(embeddings1, embeddings2)]
if "similarity_score" in dataset[0]:
labels = [item["similarity_score"] for item in dataset]
corr = np.corrcoef(sims, labels)[0, 1]
return float(corr)
else:
print("No similarity scores in dataset.")
return None
except Exception as e:
print(f"Evaluation failed: {e}")
return None