Mattral's picture
Create app.py
1835c00 verified
raw
history blame
7.79 kB
import streamlit as st
import numpy as np
import librosa
import librosa.display
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import plotly.express as px
import soundfile as sf
from scipy.signal import stft
# Dummy CNN Model for Audio
class AudioCNN(nn.Module):
def __init__(self):
super(AudioCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.fc1 = nn.Linear(32 * 32 * 8, 128) # Adjusted for typical spectrogram size
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x1 = F.relu(self.conv1(x)) # First conv layer activation
x2 = F.relu(self.conv2(x1))
x3 = F.adaptive_avg_pool2d(x2, (8, 32))
x4 = x3.view(x3.size(0), -1)
x5 = F.relu(self.fc1(x4))
x6 = self.fc2(x5)
return x6, x1
# Audio processing functions
def load_audio(file):
audio, sr = librosa.load(file, sr=None, mono=True)
return audio, sr
def apply_fft(audio):
fft = np.fft.fft(audio)
magnitude = np.abs(fft)
phase = np.angle(fft)
return fft, magnitude, phase
def filter_fft(fft, percentage):
magnitude = np.abs(fft)
sorted_indices = np.argsort(magnitude)[::-1]
num_keep = int(len(sorted_indices) * percentage / 100)
mask = np.zeros_like(fft)
mask[sorted_indices[:num_keep]] = 1
return fft * mask
def create_spectrogram(audio, sr):
n_fft = 2048
hop_length = 512
stft = librosa.stft(audio, n_fft=n_fft, hop_length=hop_length)
spectrogram = np.abs(stft)
return spectrogram, n_fft, hop_length
# Visualization functions
def plot_waveform(audio, sr, title):
fig = go.Figure()
time = np.arange(len(audio)) / sr
fig.add_trace(go.Scatter(x=time, y=audio, mode='lines'))
fig.update_layout(title=title, xaxis_title='Time (s)', yaxis_title='Amplitude')
return fig
def plot_fft(magnitude, phase, sr):
fig = make_subplots(rows=2, cols=1, subplot_titles=('Magnitude Spectrum', 'Phase Spectrum'))
freq = np.fft.fftfreq(len(magnitude), 1/sr)
fig.add_trace(go.Scatter(x=freq, y=magnitude, mode='lines', name='Magnitude'), row=1, col=1)
fig.add_trace(go.Scatter(x=freq, y=phase, mode='lines', name='Phase'), row=2, col=1)
fig.update_xaxes(title_text='Frequency (Hz)', row=1, col=1)
fig.update_xaxes(title_text='Frequency (Hz)', row=2, col=1)
fig.update_yaxes(title_text='Magnitude', row=1, col=1)
fig.update_yaxes(title_text='Phase (radians)', row=2, col=1)
return fig
def plot_3d_fft(magnitude, phase, sr):
freq = np.fft.fftfreq(len(magnitude), 1/sr)
fig = go.Figure(data=[go.Scatter3d(
x=freq,
y=magnitude,
z=phase,
mode='markers',
marker=dict(
size=5,
color=phase, # Color by phase
colorscale='Viridis', # Choose a colorscale
opacity=0.8
)
)])
fig.update_layout(scene=dict(
xaxis_title='Frequency (Hz)',
yaxis_title='Magnitude',
zaxis_title='Phase (radians)'
))
return fig
def plot_spectrogram(spectrogram, sr, hop_length):
fig, ax = plt.subplots()
img = librosa.display.specshow(librosa.amplitude_to_db(spectrogram, ref=np.max),
sr=sr, hop_length=hop_length, x_axis='time', y_axis='log', ax=ax)
plt.colorbar(img, ax=ax, format='%+2.0f dB')
plt.title('Spectrogram')
return fig
def create_fft_table(magnitude, phase, sr):
freq = np.fft.fftfreq(len(magnitude), 1/sr)
df = pd.DataFrame({
'Frequency (Hz)': freq,
'Magnitude': magnitude,
'Phase (radians)': phase
})
return df
# Streamlit UI
st.set_page_config(layout="wide")
st.title("Audio Frequency Analysis with CNN")
# Initialize session state
if 'audio_data' not in st.session_state:
st.session_state.audio_data = None
if 'sr' not in st.session_state:
st.session_state.sr = None
if 'fft' not in st.session_state:
st.session_state.fft = None
# File uploader
uploaded_file = st.file_uploader("Upload an audio file", type=['wav', 'mp3', 'ogg'])
if uploaded_file is not None:
# Load and process audio
audio, sr = load_audio(uploaded_file)
st.session_state.audio_data = audio
st.session_state.sr = sr
# Display original waveform
st.subheader("Original Audio Waveform")
st.plotly_chart(plot_waveform(audio, sr, "Original Waveform"), use_container_width=True)
# Apply FFT
fft, magnitude, phase = apply_fft(audio)
st.session_state.fft = fft
# Display FFT results
st.subheader("Frequency Domain Analysis")
st.plotly_chart(plot_fft(magnitude, phase, sr), use_container_width=True)
# 3D FFT Plot
st.subheader("3D Frequency Domain Analysis")
st.plotly_chart(plot_3d_fft(magnitude, phase, sr), use_container_width=True)
# FFT Table
st.subheader("FFT Values Table")
fft_table = create_fft_table(magnitude, phase, sr)
st.dataframe(fft_table)
# Frequency filtering
percentage = st.slider("Percentage of frequencies to retain:", 0.1, 100.0, 10.0, 0.1)
if st.button("Apply Frequency Filter"):
filtered_fft = filter_fft(st.session_state.fft, percentage)
reconstructed = np.fft.ifft(filtered_fft).real
# Display reconstructed waveform
st.subheader("Reconstructed Audio")
st.plotly_chart(plot_waveform(reconstructed, sr, "Filtered Waveform"), use_container_width=True)
# Play audio
st.audio(reconstructed, sample_rate=sr)
# Spectrogram creation
st.subheader("Spectrogram Analysis")
spectrogram, n_fft, hop_length = create_spectrogram(audio, sr)
st.pyplot(plot_spectrogram(spectrogram, sr, hop_length))
# CNN Processing
if st.button("Process with CNN"):
# Convert spectrogram to tensor
spec_tensor = torch.tensor(spectrogram[np.newaxis, np.newaxis, ...], dtype=torch.float32)
model = AudioCNN()
with torch.no_grad():
output, activations = model(spec_tensor)
# Visualize activations
st.subheader("CNN Layer Activations")
# Input spectrogram
st.write("### Input Spectrogram")
fig_input, ax = plt.subplots()
ax.imshow(spectrogram, aspect='auto', origin='lower')
st.pyplot(fig_input)
# First conv layer activations
st.write("### First Convolution Layer Activations")
activation = activations.detach().numpy()[0]
cols = 4
rows = 4
fig, axs = plt.subplots(rows, cols, figsize=(20, 20))
for i in range(16):
ax = axs[i//cols, i%cols]
ax.imshow(activation[i], aspect='auto', origin='lower')
ax.set_title(f'Channel {i+1}')
plt.tight_layout()
st.pyplot(fig)
# Classification results
st.write("### Classification Output")
probabilities = F.softmax(output, dim=1).numpy()[0]
classes = [f"Class {i}" for i in range(10)]
df = pd.DataFrame({"Class": classes, "Probability": probabilities})
fig = px.bar(df, x="Class", y="Probability", color="Probability")
st.plotly_chart(fig)
# Add some styling
st.markdown("""
<style>
.stButton>button {
padding: 10px 20px;
font-size: 16px;
background-color: #4CAF50;
color: white;
}
.stSlider>div>div>div>div {
background-color: #4CAF50;
}
</style>
""", unsafe_allow_html=True)