Spaces:
Sleeping
Sleeping
File size: 7,788 Bytes
1835c00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import streamlit as st
import numpy as np
import librosa
import librosa.display
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import plotly.express as px
import soundfile as sf
from scipy.signal import stft
# Dummy CNN Model for Audio
class AudioCNN(nn.Module):
def __init__(self):
super(AudioCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.fc1 = nn.Linear(32 * 32 * 8, 128) # Adjusted for typical spectrogram size
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x1 = F.relu(self.conv1(x)) # First conv layer activation
x2 = F.relu(self.conv2(x1))
x3 = F.adaptive_avg_pool2d(x2, (8, 32))
x4 = x3.view(x3.size(0), -1)
x5 = F.relu(self.fc1(x4))
x6 = self.fc2(x5)
return x6, x1
# Audio processing functions
def load_audio(file):
audio, sr = librosa.load(file, sr=None, mono=True)
return audio, sr
def apply_fft(audio):
fft = np.fft.fft(audio)
magnitude = np.abs(fft)
phase = np.angle(fft)
return fft, magnitude, phase
def filter_fft(fft, percentage):
magnitude = np.abs(fft)
sorted_indices = np.argsort(magnitude)[::-1]
num_keep = int(len(sorted_indices) * percentage / 100)
mask = np.zeros_like(fft)
mask[sorted_indices[:num_keep]] = 1
return fft * mask
def create_spectrogram(audio, sr):
n_fft = 2048
hop_length = 512
stft = librosa.stft(audio, n_fft=n_fft, hop_length=hop_length)
spectrogram = np.abs(stft)
return spectrogram, n_fft, hop_length
# Visualization functions
def plot_waveform(audio, sr, title):
fig = go.Figure()
time = np.arange(len(audio)) / sr
fig.add_trace(go.Scatter(x=time, y=audio, mode='lines'))
fig.update_layout(title=title, xaxis_title='Time (s)', yaxis_title='Amplitude')
return fig
def plot_fft(magnitude, phase, sr):
fig = make_subplots(rows=2, cols=1, subplot_titles=('Magnitude Spectrum', 'Phase Spectrum'))
freq = np.fft.fftfreq(len(magnitude), 1/sr)
fig.add_trace(go.Scatter(x=freq, y=magnitude, mode='lines', name='Magnitude'), row=1, col=1)
fig.add_trace(go.Scatter(x=freq, y=phase, mode='lines', name='Phase'), row=2, col=1)
fig.update_xaxes(title_text='Frequency (Hz)', row=1, col=1)
fig.update_xaxes(title_text='Frequency (Hz)', row=2, col=1)
fig.update_yaxes(title_text='Magnitude', row=1, col=1)
fig.update_yaxes(title_text='Phase (radians)', row=2, col=1)
return fig
def plot_3d_fft(magnitude, phase, sr):
freq = np.fft.fftfreq(len(magnitude), 1/sr)
fig = go.Figure(data=[go.Scatter3d(
x=freq,
y=magnitude,
z=phase,
mode='markers',
marker=dict(
size=5,
color=phase, # Color by phase
colorscale='Viridis', # Choose a colorscale
opacity=0.8
)
)])
fig.update_layout(scene=dict(
xaxis_title='Frequency (Hz)',
yaxis_title='Magnitude',
zaxis_title='Phase (radians)'
))
return fig
def plot_spectrogram(spectrogram, sr, hop_length):
fig, ax = plt.subplots()
img = librosa.display.specshow(librosa.amplitude_to_db(spectrogram, ref=np.max),
sr=sr, hop_length=hop_length, x_axis='time', y_axis='log', ax=ax)
plt.colorbar(img, ax=ax, format='%+2.0f dB')
plt.title('Spectrogram')
return fig
def create_fft_table(magnitude, phase, sr):
freq = np.fft.fftfreq(len(magnitude), 1/sr)
df = pd.DataFrame({
'Frequency (Hz)': freq,
'Magnitude': magnitude,
'Phase (radians)': phase
})
return df
# Streamlit UI
st.set_page_config(layout="wide")
st.title("Audio Frequency Analysis with CNN")
# Initialize session state
if 'audio_data' not in st.session_state:
st.session_state.audio_data = None
if 'sr' not in st.session_state:
st.session_state.sr = None
if 'fft' not in st.session_state:
st.session_state.fft = None
# File uploader
uploaded_file = st.file_uploader("Upload an audio file", type=['wav', 'mp3', 'ogg'])
if uploaded_file is not None:
# Load and process audio
audio, sr = load_audio(uploaded_file)
st.session_state.audio_data = audio
st.session_state.sr = sr
# Display original waveform
st.subheader("Original Audio Waveform")
st.plotly_chart(plot_waveform(audio, sr, "Original Waveform"), use_container_width=True)
# Apply FFT
fft, magnitude, phase = apply_fft(audio)
st.session_state.fft = fft
# Display FFT results
st.subheader("Frequency Domain Analysis")
st.plotly_chart(plot_fft(magnitude, phase, sr), use_container_width=True)
# 3D FFT Plot
st.subheader("3D Frequency Domain Analysis")
st.plotly_chart(plot_3d_fft(magnitude, phase, sr), use_container_width=True)
# FFT Table
st.subheader("FFT Values Table")
fft_table = create_fft_table(magnitude, phase, sr)
st.dataframe(fft_table)
# Frequency filtering
percentage = st.slider("Percentage of frequencies to retain:", 0.1, 100.0, 10.0, 0.1)
if st.button("Apply Frequency Filter"):
filtered_fft = filter_fft(st.session_state.fft, percentage)
reconstructed = np.fft.ifft(filtered_fft).real
# Display reconstructed waveform
st.subheader("Reconstructed Audio")
st.plotly_chart(plot_waveform(reconstructed, sr, "Filtered Waveform"), use_container_width=True)
# Play audio
st.audio(reconstructed, sample_rate=sr)
# Spectrogram creation
st.subheader("Spectrogram Analysis")
spectrogram, n_fft, hop_length = create_spectrogram(audio, sr)
st.pyplot(plot_spectrogram(spectrogram, sr, hop_length))
# CNN Processing
if st.button("Process with CNN"):
# Convert spectrogram to tensor
spec_tensor = torch.tensor(spectrogram[np.newaxis, np.newaxis, ...], dtype=torch.float32)
model = AudioCNN()
with torch.no_grad():
output, activations = model(spec_tensor)
# Visualize activations
st.subheader("CNN Layer Activations")
# Input spectrogram
st.write("### Input Spectrogram")
fig_input, ax = plt.subplots()
ax.imshow(spectrogram, aspect='auto', origin='lower')
st.pyplot(fig_input)
# First conv layer activations
st.write("### First Convolution Layer Activations")
activation = activations.detach().numpy()[0]
cols = 4
rows = 4
fig, axs = plt.subplots(rows, cols, figsize=(20, 20))
for i in range(16):
ax = axs[i//cols, i%cols]
ax.imshow(activation[i], aspect='auto', origin='lower')
ax.set_title(f'Channel {i+1}')
plt.tight_layout()
st.pyplot(fig)
# Classification results
st.write("### Classification Output")
probabilities = F.softmax(output, dim=1).numpy()[0]
classes = [f"Class {i}" for i in range(10)]
df = pd.DataFrame({"Class": classes, "Probability": probabilities})
fig = px.bar(df, x="Class", y="Probability", color="Probability")
st.plotly_chart(fig)
# Add some styling
st.markdown("""
<style>
.stButton>button {
padding: 10px 20px;
font-size: 16px;
background-color: #4CAF50;
color: white;
}
.stSlider>div>div>div>div {
background-color: #4CAF50;
}
</style>
""", unsafe_allow_html=True)
|