File size: 2,482 Bytes
d8fcee4
d767ca6
d8fcee4
 
 
bc8b335
8ec67ee
d8fcee4
 
 
 
bc8b335
 
 
 
 
 
d135db4
f606112
d767ca6
 
bc8b335
 
 
 
 
 
 
7d80404
d767ca6
 
bc8b335
d767ca6
 
 
f606112
 
d767ca6
f606112
d767ca6
f606112
d767ca6
f606112
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import FluxPipeline #CogView4Pipeline #, StableDiffusion3Pipeline from diffusers import CogView4Pipeline
from huggingface_hub import hf_hub_download

device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
pipe = CogView4Pipeline.from_pretrained("THUDM/CogView4-6B", torch_dtype=torch.bfloat16)

# Open it for reduce GPU memory usage
pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()

def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed):
    generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
       
    image = pipe(
        prompt=Prompt, negative_prompt=negative_prompt,
        guidance_scale=scale,
        num_images_per_prompt=1,
        num_inference_steps=steps,
        width=width,
        height=height,).images[0]

    return image
    
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), 
                               gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
                               gr.Slider(512, 1024, 768, step=128, label='Height'),
                               gr.Slider(512, 1024, 768, step=128, label='Width'),
                               gr.Slider(3, maximum=12, value=5, step=.25, label='Guidance Scale', info="5-7 for PhotoReal and 7-10 for Animagine"), 
                               gr.Slider(25, maximum=50, value=25, step=25, label='Number of Iterations'), 
                               gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'), 
                               ],
             outputs=gr.Image(label='Generated Image'), 
             title="Manju Dream Booth V2.5 - GPU", 
             description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.", 
             article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>DOGE: DL5qRkGCzB2ENBKfEhHarvKm1qas3wyHx7<br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)