Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -7,23 +7,23 @@ from diffusers import DiffusionPipeline, StableDiffusion3Pipeline
|
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
10 |
-
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
|
11 |
torch.cuda.max_memory_allocated(device=device)
|
12 |
torch.cuda.empty_cache()
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
torch.cuda.empty_cache()
|
16 |
|
|
|
17 |
def genie (Prompt, negative_prompt, height, width, scale, steps, seed):
|
18 |
-
torch.cuda.empty_cache()
|
19 |
-
torch.cuda.max_memory_allocated(device=device)
|
20 |
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
|
|
|
21 |
int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
|
22 |
-
torch.cuda.empty_cache()
|
23 |
-
torch.cuda.max_memory_allocated(device=device)
|
24 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0").to(device)
|
25 |
-
#refiner.enable_xformers_memory_efficient_attention()
|
26 |
-
torch.cuda.empty_cache()
|
27 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=.99).images[0]
|
28 |
torch.cuda.empty_cache()
|
29 |
|
@@ -31,8 +31,8 @@ def genie (Prompt, negative_prompt, height, width, scale, steps, seed):
|
|
31 |
|
32 |
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
33 |
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
34 |
-
gr.Slider(512,
|
35 |
-
gr.Slider(512,
|
36 |
gr.Slider(.5, maximum=15, value=7, step=.25, label='Guidance Scale'),
|
37 |
gr.Slider(10, maximum=50, value=25, step=5, label='Number of Prior Iterations'),
|
38 |
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random')],
|
|
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
10 |
torch.cuda.max_memory_allocated(device=device)
|
11 |
torch.cuda.empty_cache()
|
12 |
+
torch.cuda.max_memory_allocated(device=device)
|
13 |
+
pipe = DiffusionPipeline.from_pretrained("circulus/canvers-fusionXL-v1", torch_dtype=torch.float16).to(device)
|
14 |
+
pipe.enable_xformers_memory_efficient_attention()
|
15 |
+
torch.cuda.empty_cache()
|
16 |
+
|
17 |
+
torch.cuda.max_memory_allocated(device=device)
|
18 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16").to(device)
|
19 |
+
refiner.enable_xformers_memory_efficient_attention()
|
20 |
torch.cuda.empty_cache()
|
21 |
|
22 |
+
|
23 |
def genie (Prompt, negative_prompt, height, width, scale, steps, seed):
|
|
|
|
|
24 |
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
|
25 |
+
#generator=np.random.seed(0)
|
26 |
int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
|
|
|
|
|
|
|
|
|
|
|
27 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=.99).images[0]
|
28 |
torch.cuda.empty_cache()
|
29 |
|
|
|
31 |
|
32 |
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
33 |
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
34 |
+
gr.Slider(512, 1536, 1024, step=128, label='Height'),
|
35 |
+
gr.Slider(512, 1536, 1024, step=128, label='Width'),
|
36 |
gr.Slider(.5, maximum=15, value=7, step=.25, label='Guidance Scale'),
|
37 |
gr.Slider(10, maximum=50, value=25, step=5, label='Number of Prior Iterations'),
|
38 |
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random')],
|