Spaces:
Running
on
T4
Running
on
T4
File size: 2,772 Bytes
d8fcee4 5b148b6 8ec67ee d8fcee4 b50af58 d8fcee4 87a75a2 01c29bd 87a75a2 5b148b6 adff792 108b1be 1663d97 adff792 87a75a2 01c29bd bad37a2 87a75a2 5b148b6 8d3fd7c d8fcee4 5b148b6 d8fcee4 6334560 5b148b6 d8fcee4 5b148b6 d8fcee4 5b148b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusion3Pipeline
from huggingface_hub import hf_hub_download
device = 'cuda' if torch.cuda.is_available() else 'cpu'
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()
pipe = DiffusionPipeline.from_pretrained("circulus/canvers-fusionXL-v1").to(device)
#pipe.enable_xformers_memory_efficient_attention()
torch.cuda.empty_cache()
def genie (Prompt, negative_prompt, height, width, scale, steps, seed):
torch.cuda.empty_cache()
torch.cuda.max_memory_allocated(device=device)
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
torch.cuda.empty_cache()
torch.cuda.max_memory_allocated(device=device)
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0").to(device)
#refiner.enable_xformers_memory_efficient_attention()
torch.cuda.empty_cache()
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=.99).images[0]
torch.cuda.empty_cache()
return image
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
gr.Slider(512, 1280, 768, step=128, label='Height'),
gr.Slider(512, 1280, 768, step=128, label='Width'),
gr.Slider(.5, maximum=15, value=7, step=.25, label='Guidance Scale'),
gr.Slider(10, maximum=50, value=25, step=5, label='Number of Prior Iterations'),
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random')],
outputs=gr.Image(label='Generated Image'),
title="Manju Dream Booth V2.5 with Fusion XL - GPU",
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.",
article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>DOGE: D9QdVPtcU1EFH8jDC8jhU9uBcSTqUiA8h6<br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True) |