Manjushri commited on
Commit
5b148b6
·
verified ·
1 Parent(s): d296940

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -33
app.py CHANGED
@@ -3,49 +3,40 @@ import torch
3
  import numpy as np
4
  import modin.pandas as pd
5
  from PIL import Image
6
- from diffusers import DiffusionPipeline #, StableDiffusion3Pipeline
7
  from huggingface_hub import hf_hub_download
8
 
9
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
10
  torch.cuda.max_memory_allocated(device=device)
11
  torch.cuda.empty_cache()
 
 
 
 
 
 
 
 
 
 
12
 
13
- def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed):
14
  generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
15
-
16
- if Model == "PhotoReal":
17
- pipe = DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.9.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.9.1")
18
- pipe.enable_xformers_memory_efficient_attention()
19
- pipe = pipe.to(device)
20
- torch.cuda.empty_cache()
21
-
22
- image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
23
- torch.cuda.empty_cache()
24
- return image
25
-
26
- if Model == "Animagine XL 4":
27
- animagine = DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-4.0", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-4.0")
28
- animagine.enable_xformers_memory_efficient_attention()
29
- animagine = animagine.to(device)
30
- torch.cuda.empty_cache()
31
 
32
- image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
33
- torch.cuda.empty_cache()
34
- return image
35
-
36
-
37
  return image
38
 
39
- gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Animagine XL 4',], value='PhotoReal', label='Choose Model'),
40
- gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
41
  gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
42
- gr.Slider(512, 1024, 768, step=128, label='Height'),
43
- gr.Slider(512, 1024, 768, step=128, label='Width'),
44
- gr.Slider(3, maximum=12, value=5, step=.25, label='Guidance Scale', info="5-7 for PhotoReal and 7-10 for Animagine"),
45
- gr.Slider(25, maximum=50, value=25, step=25, label='Number of Iterations'),
46
- gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'),
47
- ],
48
  outputs=gr.Image(label='Generated Image'),
49
- title="Manju Dream Booth V2.5 - GPU",
50
  description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.",
51
- article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>DOGE: DL5qRkGCzB2ENBKfEhHarvKm1qas3wyHx7<br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)
 
3
  import numpy as np
4
  import modin.pandas as pd
5
  from PIL import Image
6
+ from diffusers import DiffusionPipeline, StableDiffusion3Pipeline
7
  from huggingface_hub import hf_hub_download
8
 
9
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
10
  torch.cuda.max_memory_allocated(device=device)
11
  torch.cuda.empty_cache()
12
+ #torch.cuda.max_memory_allocated(device=device)
13
+ pipe = DiffusionPipeline.from_pretrained("circulus/canvers-fusionXL-v1", torch_dtype=torch.float16).to(device)
14
+ pipe.enable_xformers_memory_efficient_attention()
15
+ torch.cuda.empty_cache()
16
+
17
+ #torch.cuda.max_memory_allocated(device=device)
18
+ refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16").to(device)
19
+ refiner.enable_xformers_memory_efficient_attention()
20
+ torch.cuda.empty_cache()
21
+
22
 
23
+ def genie (Prompt, negative_prompt, height, width, scale, steps, seed):
24
  generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
25
+ #generator=np.random.seed(0)
26
+ int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
27
+ image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=.99).images[0]
28
+ torch.cuda.empty_cache()
 
 
 
 
 
 
 
 
 
 
 
 
29
 
 
 
 
 
 
30
  return image
31
 
32
+ gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
 
33
  gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
34
+ gr.Slider(512, 1536, 1024, step=128, label='Height'),
35
+ gr.Slider(512, 1536, 1024, step=128, label='Width'),
36
+ gr.Slider(.5, maximum=15, value=7, step=.25, label='Guidance Scale'),
37
+ gr.Slider(10, maximum=50, value=25, step=5, label='Number of Prior Iterations'),
38
+ gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random')],
 
39
  outputs=gr.Image(label='Generated Image'),
40
+ title="Manju Dream Booth V2.5 with Fusion XL - GPU",
41
  description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.",
42
+ article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>DOGE: D9QdVPtcU1EFH8jDC8jhU9uBcSTqUiA8h6<br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True)