File size: 22,302 Bytes
07d5247
058e9d8
 
6d70521
058e9d8
01807fb
9d9e3ec
ed724f7
700b834
b4bce2e
07d5247
6312a59
6b2dfd8
c4f2418
2c339b8
1d66cba
 
d77ecd6
1d66cba
6312a59
c4f2418
 
 
 
fa37ad2
 
b4bce2e
6312a59
2cf2468
 
bc862a1
7325dc7
2cf2468
7325dc7
 
 
 
5bf3881
15435c2
8cee0dc
15435c2
 
 
 
 
 
 
 
 
 
 
0389115
573943b
1d66cba
 
d77ecd6
1d66cba
6312a59
c4f2418
 
 
 
fa37ad2
 
b4bce2e
30917e2
 
 
 
 
 
 
 
 
 
fa37ad2
30917e2
 
 
 
 
 
 
 
 
 
 
 
 
 
0521099
1d66cba
 
d77ecd6
1d66cba
6312a59
c4f2418
 
 
 
573943b
 
b4bce2e
30917e2
ad1d156
30917e2
 
 
 
 
 
 
 
 
573943b
30917e2
 
 
 
 
 
 
 
 
 
 
 
 
0521099
2c339b8
1d66cba
 
d77ecd6
1d66cba
6312a59
c4f2418
 
 
 
0521099
 
 
30917e2
ad1d156
30917e2
 
 
 
 
 
 
 
 
0521099
30917e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4824429
2c339b8
4824429
 
d77ecd6
4824429
6312a59
c4f2418
 
 
 
b66ce33
ed90ec2
4824429
30917e2
ad1d156
30917e2
 
 
 
 
 
 
 
 
4824429
30917e2
 
 
 
 
 
 
 
 
 
 
 
ad1d156
 
 
80ba029
 
 
 
d77ecd6
80ba029
6312a59
c4f2418
134fe05
a3f33c1
134fe05
 
 
 
 
 
80ba029
30917e2
ad1d156
30917e2
 
 
 
241d995
30917e2
 
 
 
80ba029
30917e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81dec84
 
2d7fd47
700b834
81dec84
 
d77ecd6
81dec84
9dee48e
6312a59
d77ecd6
c4f2418
8c42d1b
 
fb73fa2
 
d00f6d2
c4f2418
d00f6d2
81dec84
30917e2
ad1d156
30917e2
 
 
 
06ace5c
30917e2
 
 
 
9dee48e
30917e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dee48e
d6c9a76
058e9d8
81dec84
fa37ad2
a2749d1
b32943f
 
fb73fa2
ed810ef
70733c7
ebec2b0
6312a59
0450aa3
d6c9a76
0450aa3
26d38a8
197df94
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline

device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()

def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, refine, high_noise_frac, upscale):
    generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
       
    if Model == "PhotoReal":
        pipe = DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1")
        pipe.enable_xformers_memory_efficient_attention()
        pipe = pipe.to(device)
        torch.cuda.empty_cache()
        if refine == "Yes":
            refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
            refiner.enable_xformers_memory_efficient_attention()
            refiner = refiner.to(device)
            torch.cuda.empty_cache()
            int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            if upscale == "Yes":
                refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                refiner.enable_xformers_memory_efficient_attention()
                refiner = refiner.to(device)
                torch.cuda.empty_cache()
                upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                return image
        else:
            if upscale == "Yes":
                image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
                upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                upscaler.enable_xformers_memory_efficient_attention()
                upscaler = upscaler.to(device)
                torch.cuda.empty_cache()
                upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
               image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
               torch.cuda.empty_cache()
               return image
    
    if Model == "Anime":
        anime = DiffusionPipeline.from_pretrained("circulus/canvers-anime-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-anime-v3.8.1")
        anime.enable_xformers_memory_efficient_attention()
        anime = anime.to(device)
        torch.cuda.empty_cache()
        if refine == "Yes":
            refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
            refiner.enable_xformers_memory_efficient_attention()
            refiner = refiner.to(device)
            torch.cuda.empty_cache()
            int_image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            if upscale == "Yes":
                refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                refiner.enable_xformers_memory_efficient_attention()
                refiner = refiner.to(device)
                torch.cuda.empty_cache()
                upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                return image
        else:
            if upscale == "Yes":
                image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
                upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                upscaler.enable_xformers_memory_efficient_attention()
                upscaler = upscaler.to(device)
                torch.cuda.empty_cache()
                upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
               image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
               torch.cuda.empty_cache()
               return image
                
    if Model == "Disney":
        disney = DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1")
        disney.enable_xformers_memory_efficient_attention()
        disney = disney.to(device)
        torch.cuda.empty_cache()
        if refine == "Yes":
            refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
            refiner.enable_xformers_memory_efficient_attention()
            refiner = refiner.to(device)
            torch.cuda.empty_cache()
            int_image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            
            if upscale == "Yes":
                refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                refiner.enable_xformers_memory_efficient_attention()
                refiner = refiner.to(device)
                torch.cuda.empty_cache()
                upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                return image
        else:
            if upscale == "Yes":
                image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
                upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                upscaler.enable_xformers_memory_efficient_attention()
                upscaler = upscaler.to(device)
                torch.cuda.empty_cache()
                upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else: 
               image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
               torch.cuda.empty_cache()
               return image
            
    if Model == "StoryBook":
        story = DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1")
        story.enable_xformers_memory_efficient_attention()
        story = story.to(device)
        torch.cuda.empty_cache()
        if refine == "Yes":
            refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
            refiner.enable_xformers_memory_efficient_attention()
            refiner = refiner.to(device)
            torch.cuda.empty_cache()
            int_image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            
            if upscale == "Yes":
                refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                refiner.enable_xformers_memory_efficient_attention()
                refiner = refiner.to(device)
                torch.cuda.empty_cache()
                upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                return image
        else:
            if upscale == "Yes":
                image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
            
                upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                upscaler.enable_xformers_memory_efficient_attention()
                upscaler = upscaler.to(device)
                torch.cuda.empty_cache()
                upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                
               image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
               torch.cuda.empty_cache()
               return image

    if Model == "SemiReal":
        semi = DiffusionPipeline.from_pretrained("circulus/canvers-semi-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-semi-v3.8.1")
        semi.enable_xformers_memory_efficient_attention()
        semi = semi.to(device)
        torch.cuda.empty_cache()
        if refine == "Yes":
            refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
            refiner.enable_xformers_memory_efficient_attention()
            refiner = refiner.to(device)
            torch.cuda.empty_cache()
            image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            
            if upscale == "Yes":
                refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                refiner.enable_xformers_memory_efficient_attention()
                refiner = refiner.to(device)
                torch.cuda.empty_cache()
                upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                return image
        else:
            if upscale == "Yes":
                image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
            
                upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                upscaler.enable_xformers_memory_efficient_attention()
                upscaler = upscaler.to(device)
                torch.cuda.empty_cache()
                upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                
                image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
                torch.cuda.empty_cache()
                return image

    if Model == "Animagine XL 3.0":
        animagine = DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0")
        animagine.enable_xformers_memory_efficient_attention()
        animagine = animagine.to(device)
        torch.cuda.empty_cache()
        if refine == "Yes":
            torch.cuda.empty_cache()
            torch.cuda.max_memory_allocated(device=device)
            int_image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
            torch.cuda.empty_cache()
            animagine = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
            animagine.enable_xformers_memory_efficient_attention()
            animagine = animagine.to(device)
            torch.cuda.empty_cache()
            image = animagine(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            
            if upscale == "Yes":
                animagine = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                animagine.enable_xformers_memory_efficient_attention()
                animagine = animagine.to(device)
                torch.cuda.empty_cache()
                upscaled = animagine(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                return image
        else:
            if upscale == "Yes":
                image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
            
                upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                upscaler.enable_xformers_memory_efficient_attention()
                upscaler = upscaler.to(device)
                torch.cuda.empty_cache()
                upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                
               image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
               torch.cuda.empty_cache()
               return image

    if Model == "SDXL 1.0":
        torch.cuda.empty_cache()
        torch.cuda.max_memory_allocated(device=device)
        sdxl = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
        sdxl.enable_xformers_memory_efficient_attention()
        sdxl = sdxl.to(device)   
        torch.cuda.empty_cache()
    
        if refine == "Yes":
            torch.cuda.max_memory_allocated(device=device)
            torch.cuda.empty_cache()
            image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
            torch.cuda.empty_cache()
            sdxl = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
            sdxl.enable_xformers_memory_efficient_attention()
            sdxl = sdxl.to(device)
            torch.cuda.empty_cache()
            refined = sdxl(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            
            if upscale == "Yes":
                sdxl = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                sdxl.enable_xformers_memory_efficient_attention()
                sdxl = sdxl.to(device)
                torch.cuda.empty_cache()
                upscaled = sdxl(prompt=Prompt, negative_prompt=negative_prompt, image=refined, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                return refined
        else:
            if upscale == "Yes":
                image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
            
                upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                upscaler.enable_xformers_memory_efficient_attention()
                upscaler = upscaler.to(device)
                torch.cuda.empty_cache()
                upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                
               image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
               torch.cuda.empty_cache()
               
            
    return image
    
gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Anime', 'Disney', 'StoryBook', 'SemiReal', 'Animagine XL 3.0', 'SDXL 1.0'], value='PhotoReal', label='Choose Model'),
                               gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), 
                               gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
                               gr.Slider(512, 1024, 768, step=128, label='Height'),
                               gr.Slider(512, 1024, 768, step=128, label='Width'),
                               gr.Slider(1, maximum=15, value=5, step=.25, label='Guidance Scale'), 
                               gr.Slider(25, maximum=100, value=50, step=25, label='Number of Iterations'), 
                               gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'), 
                               gr.Radio(["Yes", "No"], label='SDXL 1.0 Refiner: Use if the Image has too much Noise', value='No'),
                               gr.Slider(minimum=.9, maximum=.99, value=.95, step=.01, label='Refiner Denoise Start %'),
                               gr.Radio(["Yes", "No"], label = 'SD X2 Latent Upscaler?', value="No")],
             outputs=gr.Image(label='Generated Image'), 
             title="Manju Dream Booth V1.7 with SDXL 1.0 Refiner and SD X2 Latent Upscaler - GPU", 
             description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.", 
             article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>BTC2: 3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)