Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -11,19 +11,17 @@ torch.cuda.empty_cache()
|
|
11 |
|
12 |
def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, upscale, high_noise_frac):
|
13 |
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
|
14 |
-
|
15 |
-
if upscale == "Yes":
|
16 |
-
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
17 |
-
refiner.enable_xformers_memory_efficient_attention()
|
18 |
-
refiner = refiner.to(device)
|
19 |
-
torch.cuda.empty_cache()
|
20 |
-
|
21 |
if Model == "PhotoReal":
|
22 |
pipe = DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1")
|
23 |
pipe.enable_xformers_memory_efficient_attention()
|
24 |
pipe = pipe.to(device)
|
25 |
torch.cuda.empty_cache()
|
26 |
if upscale == "Yes":
|
|
|
|
|
|
|
|
|
27 |
int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
28 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
29 |
torch.cuda.empty_cache()
|
@@ -39,6 +37,10 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, up
|
|
39 |
anime = anime.to(device)
|
40 |
torch.cuda.empty_cache()
|
41 |
if upscale == "Yes":
|
|
|
|
|
|
|
|
|
42 |
int_image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
43 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
44 |
torch.cuda.empty_cache()
|
@@ -54,6 +56,10 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, up
|
|
54 |
disney = disney.to(device)
|
55 |
torch.cuda.empty_cache()
|
56 |
if upscale == "Yes":
|
|
|
|
|
|
|
|
|
57 |
int_image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
58 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
59 |
torch.cuda.empty_cache()
|
@@ -69,6 +75,10 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, up
|
|
69 |
story = story.to(device)
|
70 |
torch.cuda.empty_cache()
|
71 |
if upscale == "Yes":
|
|
|
|
|
|
|
|
|
72 |
int_image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
73 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
74 |
torch.cuda.empty_cache()
|
@@ -84,6 +94,10 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, up
|
|
84 |
semi = semi.to(device)
|
85 |
torch.cuda.empty_cache()
|
86 |
if upscale == "Yes":
|
|
|
|
|
|
|
|
|
87 |
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
|
88 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
|
89 |
torch.cuda.empty_cache()
|
@@ -99,6 +113,10 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, up
|
|
99 |
animagine = animagine.to(device)
|
100 |
torch.cuda.empty_cache()
|
101 |
if upscale == "Yes":
|
|
|
|
|
|
|
|
|
102 |
int_image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
|
103 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
104 |
torch.cuda.empty_cache()
|
@@ -117,8 +135,12 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, up
|
|
117 |
torch.cuda.empty_cache()
|
118 |
|
119 |
if upscale == "Yes":
|
120 |
-
torch.cuda.empty_cache()
|
121 |
torch.cuda.max_memory_allocated(device=device)
|
|
|
|
|
|
|
|
|
|
|
122 |
image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
|
123 |
torch.cuda.empty_cache()
|
124 |
refined = refiner(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
|
|
|
11 |
|
12 |
def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, upscale, high_noise_frac):
|
13 |
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
|
14 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
if Model == "PhotoReal":
|
16 |
pipe = DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1")
|
17 |
pipe.enable_xformers_memory_efficient_attention()
|
18 |
pipe = pipe.to(device)
|
19 |
torch.cuda.empty_cache()
|
20 |
if upscale == "Yes":
|
21 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
22 |
+
refiner.enable_xformers_memory_efficient_attention()
|
23 |
+
refiner = refiner.to(device)
|
24 |
+
torch.cuda.empty_cache()
|
25 |
int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
26 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
27 |
torch.cuda.empty_cache()
|
|
|
37 |
anime = anime.to(device)
|
38 |
torch.cuda.empty_cache()
|
39 |
if upscale == "Yes":
|
40 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
41 |
+
refiner.enable_xformers_memory_efficient_attention()
|
42 |
+
refiner = refiner.to(device)
|
43 |
+
torch.cuda.empty_cache()
|
44 |
int_image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
45 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
46 |
torch.cuda.empty_cache()
|
|
|
56 |
disney = disney.to(device)
|
57 |
torch.cuda.empty_cache()
|
58 |
if upscale == "Yes":
|
59 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
60 |
+
refiner.enable_xformers_memory_efficient_attention()
|
61 |
+
refiner = refiner.to(device)
|
62 |
+
torch.cuda.empty_cache()
|
63 |
int_image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
64 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
65 |
torch.cuda.empty_cache()
|
|
|
75 |
story = story.to(device)
|
76 |
torch.cuda.empty_cache()
|
77 |
if upscale == "Yes":
|
78 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
79 |
+
refiner.enable_xformers_memory_efficient_attention()
|
80 |
+
refiner = refiner.to(device)
|
81 |
+
torch.cuda.empty_cache()
|
82 |
int_image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
83 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
84 |
torch.cuda.empty_cache()
|
|
|
94 |
semi = semi.to(device)
|
95 |
torch.cuda.empty_cache()
|
96 |
if upscale == "Yes":
|
97 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
98 |
+
refiner.enable_xformers_memory_efficient_attention()
|
99 |
+
refiner = refiner.to(device)
|
100 |
+
torch.cuda.empty_cache()
|
101 |
image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
|
102 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
|
103 |
torch.cuda.empty_cache()
|
|
|
113 |
animagine = animagine.to(device)
|
114 |
torch.cuda.empty_cache()
|
115 |
if upscale == "Yes":
|
116 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
117 |
+
refiner.enable_xformers_memory_efficient_attention()
|
118 |
+
refiner = refiner.to(device)
|
119 |
+
torch.cuda.empty_cache()
|
120 |
int_image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
|
121 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
122 |
torch.cuda.empty_cache()
|
|
|
135 |
torch.cuda.empty_cache()
|
136 |
|
137 |
if upscale == "Yes":
|
|
|
138 |
torch.cuda.max_memory_allocated(device=device)
|
139 |
+
torch.cuda.empty_cache()
|
140 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
141 |
+
refiner.enable_xformers_memory_efficient_attention()
|
142 |
+
refiner = refiner.to(device)
|
143 |
+
torch.cuda.empty_cache()
|
144 |
image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
|
145 |
torch.cuda.empty_cache()
|
146 |
refined = refiner(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
|