MaheshP98's picture
Update app.py
7052c88 verified
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.neighbors import LocalOutlierFactor
from datetime import datetime, timedelta
import os
import logging
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib import colors
import tempfile
# Configure logging to match the log format
logging.basicConfig(level=logging.INFO, format='%(asctime)s,%(msecs)03d - %(levelname)s - %(message)s')
# CSS styling for the Gradio interface with a dark theme and blue button
css = """
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;500;700&display=swap');
@import url('https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css');
body {
font-family: 'Roboto', sans-serif;
background-color: #1F2937;
color: #D1D5DB;
margin: 0;
padding: 20px;
}
h1 {
color: #FFFFFF;
text-align: center;
font-size: 2rem;
margin-bottom: 30px;
}
.gr-button {
background-color: #3B82F6;
color: #1F2937;
border: none;
border-radius: 8px;
padding: 12px 24px;
font-weight: 500;
transition: background-color 0.3s;
}
.gr-button:hover {
background-color: #2563EB;
}
.dashboard-container {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 20px;
max-width: 1200px;
margin: 0 auto;
}
.card {
background-color: #374151;
border: 1px solid #4B5563;
border-radius: 10px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2);
padding: 20px;
transition: transform 0.2s;
}
.card:hover {
transform: translateY(-5px);
}
.card h2 {
color: #FFFFFF;
font-size: 1.2rem;
margin-top: 0;
margin-bottom: 15px;
display: flex;
align-items: center;
gap: 8px;
}
.device-card {
border-left: 5px solid #2DD4BF;
}
.alert-card {
border-left: 5px solid #F87171;
}
.chart-container {
overflow-x: auto;
}
.dataframe-container {
max-height: 400px;
overflow-y: auto;
}
.flowchart-container {
max-height: 400px;
overflow-y: auto;
}
.flowchart {
display: flex;
flex-direction: column;
gap: 10px;
}
.flowchart-step {
background-color: #4B5563;
border-left: 5px solid #2DD4BF;
padding: 15px;
border-radius: 5px;
position: relative;
}
.flowchart-step:not(:last-child):after {
content: '↓';
position: absolute;
bottom: -20px;
left: 50%;
transform: translateX(-50%);
font-size: 20px;
color: #2DD4BF;
}
.alert-urgent {
color: #F87171;
font-weight: bold;
}
.alert-upcoming {
color: #FBBF24;
font-weight: bold;
}
.recommendation {
font-style: italic;
color: #9CA3AF;
margin-top: 10px;
}
.anomaly-badge {
display: inline-block;
padding: 5px 10px;
border-radius: 12px;
font-size: 0.9rem;
font-weight: 500;
}
.anomaly-unusual {
background-color: #FEE2E2;
color: #F87171;
}
.anomaly-normal {
background-color: #D1FAE5;
color: #10B981;
}
.download-button {
display: inline-flex;
align-items: center;
gap: 8px;
background-color: #2DD4BF;
color: #1F2937;
padding: 10px 20px;
border-radius: 8px;
text-decoration: none;
font-weight: 500;
transition: background-color 0.3s;
}
.download-button:hover {
background-color: #26A69A;
}
/* Ensure text in dataframe is readable */
.dataframe-container table {
color: #D1D5DB;
background-color: #374151;
}
.dataframe-container thead th {
background-color: #4B5563;
color: #FFFFFF;
font-weight: 500;
}
.dataframe-container tbody tr:nth-child(even) {
background-color: #4B5563;
}
.dataframe-container tbody tr:hover {
background-color: #6B7280;
}
/* Responsive Design */
@media (max-width: 768px) {
.dashboard-container {
grid-template-columns: 1fr;
}
h1 {
font-size: 1.5rem;
}
.card {
padding: 15px;
}
.gr-button {
width: 100%;
padding: 10px;
}
.download-button {
width: 100%;
justify-content: center;
}
}
"""
def validate_csv(df):
"""
Validate that the CSV has the required columns, handling both original and renamed columns.
Returns True if valid, False otherwise with an error message.
"""
# Strip whitespace from column names
df.columns = df.columns.str.strip()
# Define expected original and renamed columns
original_columns = ['device_id', 'usage_hours', 'amc_date', 'status']
renamed_columns = ['equipment', 'usage_count', 'amc_expiry', 'status']
# Check for original columns
missing_original = [col for col in original_columns if col not in df.columns]
# Check for renamed columns
missing_renamed = [col for col in renamed_columns if col not in df.columns]
# If original columns are present, proceed as is
if not missing_original:
logging.info("Found original columns in CSV. Proceeding with validation.")
# If renamed columns are present, map them back to original for validation
elif not missing_renamed:
logging.info("Found renamed columns in CSV. Mapping back to original names for validation.")
df.rename(columns={
'equipment': 'device_id',
'usage_count': 'usage_hours',
'amc_expiry': 'amc_date'
}, inplace=True)
else:
# If neither set is fully present, report missing columns
found_columns = ', '.join(df.columns)
return False, f"Missing required columns. Expected either {', '.join(original_columns)} or {', '.join(renamed_columns)}. Found columns: {found_columns}"
# Validate data types
try:
df['usage_hours'] = pd.to_numeric(df['usage_hours'], errors='raise')
# Parse amc_date with specified format
df['amc_date'] = pd.to_datetime(df['amc_date'], format='%d-%m-%Y', errors='raise')
# Handle 'downtime' if present
if 'downtime' in df.columns:
df['downtime'] = pd.to_numeric(df['downtime'], errors='raise')
except Exception as e:
return False, f"Invalid data types: {str(e)}"
# Rename columns to internal names after validation
df.rename(columns={
'device_id': 'equipment',
'usage_hours': 'usage_count',
'amc_date': 'amc_expiry'
}, inplace=True)
return True, ""
def generate_device_cards(df, anomaly_df):
"""
Generate HTML for device cards showing health, usage hours, downtime, status, log type, and timestamp.
Returns an HTML string.
"""
if anomaly_df is not None:
df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Unusual"})
else:
df['anomaly'] = "Unknown"
html = []
for device_id in df['equipment'].unique():
device_data = df[df['equipment'] == device_id].iloc[-1] # Latest record
anomaly_class = "anomaly-unusual" if device_data['anomaly'] == "Unusual" else "anomaly-normal"
downtime = device_data.get('downtime', 'N/A')
log_type = device_data.get('log_type', 'N/A')
timestamp = device_data.get('timestamp', 'N/A')
html.append(f"""
<div class="card device-card">
<h2><i class="fas fa-microchip"></i> {device_id}</h2>
<p><strong>Status:</strong> {device_data['status']}</p>
<p><strong>Usage Hours:</strong> {device_data['usage_count']}</p>
<p><strong>Downtime (hrs):</strong> {downtime}</p>
<p><strong>Activity:</strong> <span class="anomaly-badge {anomaly_class}">{device_data['anomaly']}</span></p>
<p><strong>Log Type:</strong> {log_type}</p>
<p><strong>Last Log:</strong> {timestamp}</p>
<p><strong>AMC Expiry:</strong> {device_data['amc_expiry'].strftime('%Y-%m-%d')}</p>
</div>
""")
return "\n".join(html)
def generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path):
"""
Generate a detailed and easy-to-understand summary of the processing results, including downtime.
Returns a markdown string for display in the Gradio interface.
"""
summary = []
# Overview
summary.append("## Overview")
total_records = len(combined_df)
unique_devices = combined_df['equipment'].unique()
total_downtime = combined_df['downtime'].sum() if 'downtime' in combined_df.columns else 0
summary.append(f"We processed **{total_records} log entries** for **{len(unique_devices)} devices** ({', '.join(unique_devices)}).")
summary.append(f"Total downtime recorded: **{total_downtime} hours**.")
summary.append("This dashboard provides real-time insights into device health, usage patterns, and maintenance needs.\n")
# Downtime Insights (Anomalies)
summary.append("## Downtime Insights")
if anomaly_df is not None:
num_anomalies = sum(anomaly_df['anomaly'] == -1)
if num_anomalies > 0:
summary.append(f"**{num_anomalies} potential downtime risks** detected:")
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count', 'status', 'downtime']]
for _, row in anomaly_records.iterrows():
downtime = row['downtime'] if 'downtime' in row else 'N/A'
summary.append(f"- **{row['equipment']}** (Usage: {row['usage_count']}, Status: {row['status']}, Downtime: {downtime} hrs) - Indicates possible overuse or underuse.")
else:
summary.append("No potential downtime risks detected. All devices are operating within expected patterns.")
else:
summary.append("Unable to detect downtime risks due to an error.")
summary.append("\n")
# Maintenance Alerts (AMC Expiries)
summary.append("## Maintenance Alerts")
if amc_df is not None and not amc_df.empty:
unique_devices_amc = amc_df['equipment'].unique()
summary.append(f"**{len(unique_devices_amc)} devices** need maintenance soon (within 7 days from 2025-06-05):")
for _, row in amc_df.iterrows():
days_until_expiry = (row['amc_expiry'] - datetime(2025, 6, 5)).days
urgency = "Urgent" if days_until_expiry <= 3 else "Upcoming"
urgency_class = "alert-urgent" if urgency == "Urgent" else "alert-upcoming"
summary.append(f"- <span class='{urgency_class}'>⚠️ {urgency}</span>: **{row['equipment']}** - Due on {row['amc_expiry'].strftime('%Y-%m-%d')} ({days_until_expiry} days left)")
summary.append("\n<div class='recommendation'>Recommendation: Contact the maintenance team within 24 hours for urgent alerts at support@company.com.</div>")
else:
summary.append("No devices need maintenance within the next 7 days.")
summary.append("\n")
# Generated Reports
summary.append("## Generated Reports")
summary.append("- **Usage Chart**: Visualizes usage patterns across devices, helping identify overworked or underused equipment. See below for the chart.")
summary.append("- **PDF Report**: A comprehensive report including device logs, downtime insights, maintenance alerts, and a processing flowchart. Download it below.")
return "\n".join(summary)
def generate_flowchart_html():
"""
Generate an HTML representation of the flowchart for the Gradio interface.
Returns an HTML string.
"""
steps = [
("Upload CSV File(s)", "User uploads log files in CSV format."),
("Validate Data", "Checks for required columns (device_id, usage_hours, amc_date, status) and correct data types."),
("Generate Usage Chart", "Creates a bar chart showing usage hours by device and status (e.g., ok, warning)."),
("Detect Downtime Risks", "Uses Local Outlier Factor to identify devices with unusual usage patterns (e.g., too high or too low)."),
("Check Maintenance Dates", "Identifies devices with AMC expiries within 7 days from 2025-06-05."),
("Create PDF Report", "Generates a detailed PDF with data tables, insights, and this flowchart.")
]
html = ["<div class='flowchart'>"]
for step, description in steps:
html.append(f"<div class='flowchart-step'><strong>{step}</strong><br>{description}</div>")
html.append("</div>")
return "\n".join(html)
def process_files(uploaded_files):
"""
Process uploaded CSV files, generate usage plots, detect anomalies, and process AMC expiries.
Returns a dataframe, plot path, PDF path, AMC expiry message, summary, device cards HTML, and flowchart HTML.
"""
# Log received files
logging.info(f"Received uploaded files: {uploaded_files}")
if not uploaded_files:
logging.warning("No files uploaded.")
return None, None, None, "Please upload at least one valid CSV file.", "## Summary\nNo files uploaded.", "", ""
valid_files = [f for f in uploaded_files if f.name.endswith('.csv')]
logging.info(f"Processing {len(valid_files)} valid files: {valid_files}")
if not valid_files:
logging.warning("No valid CSV files uploaded.")
return None, None, None, "Please upload at least one valid CSV file.", "## Summary\nNo valid CSV files uploaded.", "", ""
logging.info("Loading logs from uploaded files...")
all_data = []
# Load and combine CSV files
for file in valid_files:
try:
# Read CSV with explicit delimiter and strip whitespace
df = pd.read_csv(file.name, delimiter=',', skipinitialspace=True)
# Log the columns for debugging
logging.info(f"Columns in {file.name}: {', '.join(df.columns)}")
# Validate CSV structure (renaming happens inside validate_csv now)
is_valid, error_msg = validate_csv(df)
if not is_valid:
logging.error(f"Failed to load {file.name}: {error_msg}")
return None, None, None, f"Error loading {file.name}: {error_msg}", f"## Summary\nError: {error_msg}", "", ""
all_data.append(df)
except Exception as e:
logging.error(f"Failed to load {file.name}: {str(e)}")
return None, None, None, f"Error loading {file.name}: {str(e)}", f"## Summary\nError: {str(e)}", "", ""
if not all_data:
logging.warning("No data loaded from uploaded files.")
return None, None, None, "No valid data found in uploaded files.", "## Summary\nNo data loaded.", "", ""
combined_df = pd.concat(all_data, ignore_index=True)
logging.info(f"Combined {len(combined_df)} total records.")
logging.info(f"Loaded {len(combined_df)} log records from uploaded files.")
# Generate usage plot
logging.info("Generating usage plot...")
plot_path = generate_usage_plot(combined_df)
if plot_path:
logging.info("Usage plot generated successfully.")
else:
logging.error("Failed to generate usage plot.")
return combined_df, None, None, "Failed to generate usage plot.", "## Summary\nUsage plot generation failed.", "", ""
# Detect anomalies using Local Outlier Factor
logging.info("Detecting anomalies using Local Outlier Factor...")
anomaly_df = detect_anomalies(combined_df)
if anomaly_df is None:
logging.error("Failed to detect anomalies.")
else:
logging.info(f"Detected {sum(anomaly_df['anomaly'] == -1)} anomalies using Local Outlier Factor.")
# Process AMC expiries
logging.info("Processing AMC expiries...")
amc_message, amc_df = process_amc_expiries(combined_df)
# Generate PDF report
logging.info("Generating PDF report...")
pdf_path = generate_pdf_report(combined_df, anomaly_df, amc_df)
if pdf_path:
logging.info("PDF report generated successfully.")
else:
logging.error("Failed to generate PDF report.")
# Generate summary
logging.info("Generating summary of results...")
summary = generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path)
logging.info("Summary generated successfully.")
# Generate device cards
logging.info("Generating device cards HTML...")
device_cards_html = generate_device_cards(combined_df, anomaly_df)
logging.info("Device cards HTML generated successfully.")
# Generate flowchart HTML
logging.info("Generating flowchart HTML...")
flowchart_html = generate_flowchart_html()
logging.info("Flowchart HTML generated successfully.")
# Prepare output dataframe (combine original data with anomalies)
output_df = combined_df.copy()
if anomaly_df is not None:
output_df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Unusual"})
return output_df, plot_path, pdf_path, amc_message, summary, device_cards_html, flowchart_html
def generate_usage_plot(df):
"""
Generate a bar plot of usage_count by equipment and status.
Returns the path to the saved plot.
"""
try:
plt.figure(figsize=(12, 6))
# Define colors for statuses (adjusted for dark theme visibility)
status_colors = {'ok': '#2DD4BF', 'warning': '#F87171', 'normal': '#10B981', 'down': '#FBBF24'}
for status in df['status'].unique():
subset = df[df['status'] == status]
plt.bar(
subset['equipment'] + f" ({status})",
subset['usage_count'],
label=status,
color=status_colors.get(status, '#6B7280')
)
plt.xlabel("Equipment (Status)", fontsize=12, color='#D1D5DB')
plt.ylabel("Usage Hours", fontsize=12, color='#D1D5DB')
plt.title("Device Usage Overview", fontsize=14, color='#FFFFFF')
plt.legend(title="Status")
plt.xticks(rotation=45, ha='right', color='#D1D5DB')
plt.yticks(color='#D1D5DB')
plt.gca().set_facecolor('#374151')
plt.gcf().set_facecolor('#1F2937')
plt.tight_layout()
# Save plot to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp:
plt.savefig(tmp.name, format='png', dpi=100)
plot_path = tmp.name
plt.close()
return plot_path
except Exception as e:
logging.error(f"Failed to generate usage plot: {str(e)}")
return None
def detect_anomalies(df):
"""
Detect anomalies in usage_count using Local Outlier Factor.
Returns a dataframe with an 'anomaly' column (-1 for anomalies, 1 for normal).
"""
try:
model = LocalOutlierFactor(n_neighbors=5, contamination=0.1)
anomalies = model.fit_predict(df[['usage_count']].values)
anomaly_df = df.copy()
anomaly_df['anomaly'] = anomalies
return anomaly_df
except Exception as e:
logging.error(f"Failed to detect anomalies: {str(e)}")
return None
def process_amc_expiries(df):
"""
Identify devices with AMC expiries within 7 days from 2025-06-05.
Returns a message and a dataframe of devices with upcoming expiries.
"""
try:
current_date = datetime(2025, 6, 5)
threshold = current_date + timedelta(days=7)
df['amc_expiry'] = pd.to_datetime(df['amc_expiry'])
upcoming_expiries = df[df['amc_expiry'] <= threshold]
unique_devices = upcoming_expiries['equipment'].unique()
message = f"Found {len(unique_devices)} devices with upcoming AMC expiries: {', '.join(unique_devices)}. Details: " + "; ".join(
[f"{row['equipment']}: {row['amc_expiry'].strftime('%Y-%m-%d')}" for _, row in upcoming_expiries.iterrows()]
)
logging.info(f"Found {len(unique_devices)} devices with upcoming AMC expiries.")
return message, upcoming_expiries
except Exception as e:
logging.error(f"Failed to process AMC expiries: {str(e)}")
return f"Error processing AMC expiries: {str(e)}", None
def generate_pdf_report(original_df, anomaly_df, amc_df):
"""
Generate a professionally formatted PDF report with necessary fields and a detailed flowchart.
Returns the path to the saved PDF.
"""
try:
if original_df is None or original_df.empty:
logging.warning("No data available for PDF generation.")
return None
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp:
c = canvas.Canvas(tmp.name, pagesize=letter)
width, height = letter
def draw_header():
c.setFont("Helvetica-Bold", 16)
c.setFillColor(colors.darkblue)
c.drawString(50, height - 50, "Multi-Device LabOps Dashboard Report")
c.setFont("Helvetica", 10)
c.setFillColor(colors.black)
c.drawString(50, height - 70, f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
c.line(50, height - 80, width - 50, height - 80)
def draw_section_title(title, y):
c.setFont("Helvetica-Bold", 14)
c.setFillColor(colors.darkblue)
c.drawString(50, y, title)
c.setFillColor(colors.black)
c.line(50, y - 5, width - 50, y - 5)
return y - 30
y = height - 100
draw_header()
# Summary
y = draw_section_title("Summary", y)
c.setFont("Helvetica", 12)
c.drawString(50, y, f"Total Records: {len(original_df)}")
y -= 20
c.drawString(50, y, f"Unique Devices: {', '.join(original_df['equipment'].unique())}")
y -= 20
total_downtime = original_df['downtime'].sum() if 'downtime' in original_df.columns else 0
c.drawString(50, y, f"Total Downtime: {total_downtime} hours")
y -= 40
# Device Log Details
y = draw_section_title("Device Log Details", y)
c.setFont("Helvetica-Bold", 10)
headers = ["Equipment", "Timestamp", "Usage Hours", "Downtime (hrs)", "Status", "Log Type", "AMC Expiry", "Activity"]
x_positions = [50, 110, 190, 260, 320, 370, 430, 490]
for i, header in enumerate(headers):
c.drawString(x_positions[i], y, header)
c.line(50, y - 5, width - 50, y - 5)
y -= 20
c.setFont("Helvetica", 10)
output_df = original_df.copy()
if anomaly_df is not None:
output_df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Unusual"})
for _, row in output_df.iterrows():
c.drawString(50, y, str(row['equipment']))
c.drawString(110, y, str(row.get('timestamp', 'N/A')))
c.drawString(190, y, str(row['usage_count']))
c.drawString(260, y, str(row.get('downtime', 'N/A')))
c.drawString(320, y, str(row['status']))
c.drawString(370, y, str(row.get('log_type', 'N/A')))
c.drawString(430, y, str(row['amc_expiry'].strftime('%Y-%m-%d')))
c.drawString(490, y, str(row['anomaly']))
y -= 20
if y < 50:
c.showPage()
y = height - 100
draw_header()
c.setFont("Helvetica", 10)
# Downtime Insights
y = draw_section_title("Downtime Insights (Using Local Outlier Factor)", y)
c.setFont("Helvetica", 12)
if anomaly_df is not None:
num_anomalies = sum(anomaly_df['anomaly'] == -1)
c.drawString(50, y, f"Potential Downtime Risks Detected: {num_anomalies}")
y -= 20
if num_anomalies > 0:
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count', 'status', 'downtime']]
c.drawString(50, y, "Details:")
y -= 20
c.setFont("Helvetica-Oblique", 10)
for _, row in anomaly_records.iterrows():
downtime = row['downtime'] if 'downtime' in row else 'N/A'
c.drawString(50, y, f"{row['equipment']}: Usage Hours = {row['usage_count']}, Status = {row['status']}, Downtime = {downtime} hrs")
y -= 20
c.drawString(70, y, "Note: This device’s usage is significantly higher or lower than others, which may indicate overuse or underuse.")
y -= 20
if y < 50:
c.showPage()
y = height - 100
draw_header()
c.setFont("Helvetica-Oblique", 10)
else:
c.drawString(50, y, "Unable to detect downtime risks due to an error.")
y -= 20
y -= 20
# AMC Expiries
y = draw_section_title("Maintenance Alerts (as of 2025-06-05)", y)
c.setFont("Helvetica", 12)
if amc_df is not None and not amc_df.empty:
c.drawString(50, y, f"Devices Needing Maintenance Soon: {len(amc_df['equipment'].unique())}")
y -= 20
# Table headers
c.setFont("Helvetica-Bold", 10)
headers = ["Device", "Expiry Date", "Urgency", "Days Left", "Action"]
x_positions = [50, 150, 250, 350, 450]
for i, header in enumerate(headers):
c.drawString(x_positions[i], y, header)
c.line(50, y - 5, width - 50, y - 5)
y -= 20
# Table rows
c.setFont("Helvetica", 10)
for _, row in amc_df.iterrows():
days_until_expiry = (row['amc_expiry'] - datetime(2025, 6, 5)).days
urgency = "Urgent" if days_until_expiry <= 3 else "Upcoming"
action = "Contact maintenance team within 24 hours" if urgency == "Urgent" else "Schedule maintenance this week"
c.drawString(50, y, str(row['equipment']))
c.drawString(150, y, str(row['amc_expiry'].strftime('%Y-%m-%d')))
c.drawString(250, y, urgency)
c.drawString(350, y, str(days_until_expiry))
c.drawString(450, y, action)
y -= 20
if y < 50:
c.showPage()
y = height - 100
draw_header()
c.setFont("Helvetica", 10)
c.setFont("Helvetica-Oblique", 10)
c.drawString(50, y, "Contact: Email the maintenance team at support@company.com for scheduling.")
y -= 20
else:
c.drawString(50, y, "No devices need maintenance within the next 7 days.")
y -= 20
y -= 20
# Flowchart
y = draw_section_title("Processing Pipeline Flowchart", y)
c.setFont("Helvetica", 10)
flowchart = [
("1. Upload CSV File(s)", "User uploads log files in CSV format containing device usage data."),
("2. Validate Data", "Ensures all required columns (device_id, usage_hours, amc_date, status) are present and data types are correct (e.g., usage_hours as numeric, amc_date as date)."),
("3. Generate Usage Chart", "Creates a bar chart showing usage hours by device and status (e.g., ok, warning) to visualize usage patterns."),
("4. Detect Downtime Risks", "Uses Local Outlier Factor (LOF) algorithm to identify devices with unusual usage patterns by comparing local density of usage counts (contamination=0.1, n_neighbors=5)."),
("5. Check Maintenance Dates", "Identifies devices with AMC expiries within 7 days from 2025-06-05, calculating days left and urgency (urgent if ≤3 days)."),
("6. Create PDF Report", "Generates this PDF with a data table, downtime insights, maintenance alerts, and this detailed flowchart.")
]
for step, description in flowchart:
c.drawString(50, y, step)
y -= 15
c.setFont("Helvetica-Oblique", 9)
c.drawString(70, y, description)
c.setFont("Helvetica", 10)
y -= 25
if y < 50:
c.showPage()
y = height - 100
draw_header()
c.setFont("Helvetica", 10)
c.showPage()
c.save()
return tmp.name
except Exception as e:
logging.error(f"Failed to generate PDF report: {str(e)}")
return None
# Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("# Multi-Device LabOps Dashboard")
with gr.Row():
file_input = gr.File(file_count="multiple", label="Upload Device Logs (CSV)")
process_button = gr.Button("Process Logs")
with gr.Row():
output_summary = gr.Markdown(label="Dashboard Summary", elem_classes=["card"])
with gr.Row(elem_classes=["dashboard-container"]):
output_device_cards = gr.HTML(label="Device Overview")
with gr.Row(elem_classes=["dashboard-container"]):
with gr.Column():
output_plot = gr.Image(label="Usage Chart", elem_classes=["card", "chart-container"])
with gr.Column():
output_message = gr.Textbox(label="Maintenance Alerts", elem_classes=["card", "alert-card"])
with gr.Row(elem_classes=["dashboard-container"]):
output_df = gr.Dataframe(label="Device Logs", elem_classes=["card", "dataframe-container"])
with gr.Row(elem_classes=["dashboard-container"]):
output_flowchart = gr.HTML(label="Processing Flowchart", elem_classes=["card", "flowchart-container"])
with gr.Row(elem_classes=["dashboard-container"]):
with gr.Column():
output_pdf = gr.File(label="Download Detailed Report", elem_classes=["card"])
process_button.click(
fn=process_files,
inputs=[file_input],
outputs=[output_df, output_plot, output_pdf, output_message, output_summary, output_device_cards, output_flowchart]
)
if __name__ == "__main__":
logging.info("Application starting...")
demo.launch(server_name="0.0.0.0", server_port=7860)