File size: 30,262 Bytes
36459c4 6eaa3dc e2b7de3 83ce7a6 e2b7de3 36459c4 e2b7de3 c528749 e2b7de3 221e826 de27e81 221e826 7037721 1f2a07b eadd170 1f2a07b eadd170 9a6ae7c eadd170 1f2a07b 9a6ae7c 1f2a07b eadd170 1f2a07b 7037721 9a6ae7c 1f2a07b eadd170 1f2a07b 7037721 1f2a07b eadd170 9a6ae7c 1f2a07b 9a6ae7c 1f2a07b eadd170 1f2a07b eadd170 9a6ae7c eadd170 1f2a07b eadd170 1f2a07b eadd170 9a6ae7c 1f2a07b eadd170 9a6ae7c 1f2a07b eadd170 1f2a07b eadd170 1f2a07b 9a6ae7c eadd170 1f2a07b 9a6ae7c 1f2a07b eadd170 9a6ae7c eadd170 9a6ae7c eadd170 9a6ae7c eadd170 9a6ae7c eadd170 9a6ae7c eadd170 9a6ae7c eadd170 1f2a07b 231d664 7052c88 231d664 bfc7a88 7052c88 231d664 7037721 bfc7a88 7037721 231d664 7052c88 231d664 eadd170 7037721 eadd170 7037721 eadd170 7037721 eadd170 7037721 eadd170 7037721 eadd170 7037721 eadd170 83ce7a6 7037721 83ce7a6 c528749 83ce7a6 c528749 83ce7a6 7037721 c528749 7037721 eadd170 83ce7a6 eadd170 83ce7a6 eadd170 7037721 83ce7a6 7037721 83ce7a6 eadd170 83ce7a6 eadd170 83ce7a6 c528749 83ce7a6 c528749 83ce7a6 c528749 1f2a07b 83ce7a6 c528749 83ce7a6 c528749 1f2a07b eadd170 83ce7a6 1f2a07b 7037721 eadd170 1f2a07b 13ed916 e2b7de3 eadd170 e2b7de3 de27e81 13ed916 e2b7de3 eadd170 13ed916 e2b7de3 de27e81 952210b e2b7de3 eadd170 6eaa3dc de27e81 e2b7de3 684911e e2b7de3 0d752e6 bfc7a88 7052c88 231d664 eadd170 e2b7de3 0d752e6 e2b7de3 eadd170 8846627 e2b7de3 eadd170 e2b7de3 de27e81 221e826 e2b7de3 de27e81 e2b7de3 de27e81 eadd170 de27e81 83ce7a6 e2b7de3 de27e81 83ce7a6 de27e81 e2b7de3 de27e81 e2b7de3 de27e81 e2b7de3 c528749 e2b7de3 c528749 de27e81 83ce7a6 eadd170 1f2a07b e2b7de3 c528749 de27e81 eadd170 e2b7de3 231d664 9a6ae7c 7037721 e2b7de3 231d664 eadd170 231d664 9a6ae7c 7037721 9a6ae7c 231d664 9a6ae7c e2b7de3 de27e81 e2b7de3 231d664 e2b7de3 08fef74 e2b7de3 221e826 e2b7de3 83ce7a6 e2b7de3 36459c4 83ce7a6 e2b7de3 221e826 e2b7de3 36459c4 e2b7de3 83ce7a6 231d664 e2b7de3 1f2a07b e2b7de3 231d664 de27e81 e2b7de3 c528749 eadd170 c528749 83ce7a6 e2b7de3 c528749 231d664 c528749 7037721 e2b7de3 de27e81 eadd170 c528749 7037721 c528749 231d664 c528749 7037721 c528749 eadd170 c528749 e2b7de3 eadd170 231d664 e2b7de3 7037721 c528749 231d664 c528749 231d664 7037721 c528749 231d664 c528749 e2b7de3 eadd170 e2b7de3 231d664 de27e81 e2b7de3 c528749 de27e81 c528749 231d664 1f2a07b c528749 e2b7de3 c528749 1f2a07b e2b7de3 231d664 c528749 1f2a07b c528749 e2b7de3 c528749 e2b7de3 c528749 1f2a07b 7037721 eadd170 1f2a07b eadd170 c528749 1f2a07b c528749 1f2a07b c528749 de27e81 e2b7de3 de27e81 e2b7de3 1f2a07b eadd170 36459c4 eadd170 36459c4 eadd170 e2b7de3 36459c4 eadd170 36459c4 221e826 de27e81 e2b7de3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 |
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.neighbors import LocalOutlierFactor
from datetime import datetime, timedelta
import os
import logging
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib import colors
import tempfile
# Configure logging to match the log format
logging.basicConfig(level=logging.INFO, format='%(asctime)s,%(msecs)03d - %(levelname)s - %(message)s')
# CSS styling for the Gradio interface with a dark theme and blue button
css = """
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;500;700&display=swap');
@import url('https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css');
body {
font-family: 'Roboto', sans-serif;
background-color: #1F2937;
color: #D1D5DB;
margin: 0;
padding: 20px;
}
h1 {
color: #FFFFFF;
text-align: center;
font-size: 2rem;
margin-bottom: 30px;
}
.gr-button {
background-color: #3B82F6;
color: #1F2937;
border: none;
border-radius: 8px;
padding: 12px 24px;
font-weight: 500;
transition: background-color 0.3s;
}
.gr-button:hover {
background-color: #2563EB;
}
.dashboard-container {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 20px;
max-width: 1200px;
margin: 0 auto;
}
.card {
background-color: #374151;
border: 1px solid #4B5563;
border-radius: 10px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2);
padding: 20px;
transition: transform 0.2s;
}
.card:hover {
transform: translateY(-5px);
}
.card h2 {
color: #FFFFFF;
font-size: 1.2rem;
margin-top: 0;
margin-bottom: 15px;
display: flex;
align-items: center;
gap: 8px;
}
.device-card {
border-left: 5px solid #2DD4BF;
}
.alert-card {
border-left: 5px solid #F87171;
}
.chart-container {
overflow-x: auto;
}
.dataframe-container {
max-height: 400px;
overflow-y: auto;
}
.flowchart-container {
max-height: 400px;
overflow-y: auto;
}
.flowchart {
display: flex;
flex-direction: column;
gap: 10px;
}
.flowchart-step {
background-color: #4B5563;
border-left: 5px solid #2DD4BF;
padding: 15px;
border-radius: 5px;
position: relative;
}
.flowchart-step:not(:last-child):after {
content: '↓';
position: absolute;
bottom: -20px;
left: 50%;
transform: translateX(-50%);
font-size: 20px;
color: #2DD4BF;
}
.alert-urgent {
color: #F87171;
font-weight: bold;
}
.alert-upcoming {
color: #FBBF24;
font-weight: bold;
}
.recommendation {
font-style: italic;
color: #9CA3AF;
margin-top: 10px;
}
.anomaly-badge {
display: inline-block;
padding: 5px 10px;
border-radius: 12px;
font-size: 0.9rem;
font-weight: 500;
}
.anomaly-unusual {
background-color: #FEE2E2;
color: #F87171;
}
.anomaly-normal {
background-color: #D1FAE5;
color: #10B981;
}
.download-button {
display: inline-flex;
align-items: center;
gap: 8px;
background-color: #2DD4BF;
color: #1F2937;
padding: 10px 20px;
border-radius: 8px;
text-decoration: none;
font-weight: 500;
transition: background-color 0.3s;
}
.download-button:hover {
background-color: #26A69A;
}
/* Ensure text in dataframe is readable */
.dataframe-container table {
color: #D1D5DB;
background-color: #374151;
}
.dataframe-container thead th {
background-color: #4B5563;
color: #FFFFFF;
font-weight: 500;
}
.dataframe-container tbody tr:nth-child(even) {
background-color: #4B5563;
}
.dataframe-container tbody tr:hover {
background-color: #6B7280;
}
/* Responsive Design */
@media (max-width: 768px) {
.dashboard-container {
grid-template-columns: 1fr;
}
h1 {
font-size: 1.5rem;
}
.card {
padding: 15px;
}
.gr-button {
width: 100%;
padding: 10px;
}
.download-button {
width: 100%;
justify-content: center;
}
}
"""
def validate_csv(df):
"""
Validate that the CSV has the required columns, handling both original and renamed columns.
Returns True if valid, False otherwise with an error message.
"""
# Strip whitespace from column names
df.columns = df.columns.str.strip()
# Define expected original and renamed columns
original_columns = ['device_id', 'usage_hours', 'amc_date', 'status']
renamed_columns = ['equipment', 'usage_count', 'amc_expiry', 'status']
# Check for original columns
missing_original = [col for col in original_columns if col not in df.columns]
# Check for renamed columns
missing_renamed = [col for col in renamed_columns if col not in df.columns]
# If original columns are present, proceed as is
if not missing_original:
logging.info("Found original columns in CSV. Proceeding with validation.")
# If renamed columns are present, map them back to original for validation
elif not missing_renamed:
logging.info("Found renamed columns in CSV. Mapping back to original names for validation.")
df.rename(columns={
'equipment': 'device_id',
'usage_count': 'usage_hours',
'amc_expiry': 'amc_date'
}, inplace=True)
else:
# If neither set is fully present, report missing columns
found_columns = ', '.join(df.columns)
return False, f"Missing required columns. Expected either {', '.join(original_columns)} or {', '.join(renamed_columns)}. Found columns: {found_columns}"
# Validate data types
try:
df['usage_hours'] = pd.to_numeric(df['usage_hours'], errors='raise')
# Parse amc_date with specified format
df['amc_date'] = pd.to_datetime(df['amc_date'], format='%d-%m-%Y', errors='raise')
# Handle 'downtime' if present
if 'downtime' in df.columns:
df['downtime'] = pd.to_numeric(df['downtime'], errors='raise')
except Exception as e:
return False, f"Invalid data types: {str(e)}"
# Rename columns to internal names after validation
df.rename(columns={
'device_id': 'equipment',
'usage_hours': 'usage_count',
'amc_date': 'amc_expiry'
}, inplace=True)
return True, ""
def generate_device_cards(df, anomaly_df):
"""
Generate HTML for device cards showing health, usage hours, downtime, status, log type, and timestamp.
Returns an HTML string.
"""
if anomaly_df is not None:
df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Unusual"})
else:
df['anomaly'] = "Unknown"
html = []
for device_id in df['equipment'].unique():
device_data = df[df['equipment'] == device_id].iloc[-1] # Latest record
anomaly_class = "anomaly-unusual" if device_data['anomaly'] == "Unusual" else "anomaly-normal"
downtime = device_data.get('downtime', 'N/A')
log_type = device_data.get('log_type', 'N/A')
timestamp = device_data.get('timestamp', 'N/A')
html.append(f"""
<div class="card device-card">
<h2><i class="fas fa-microchip"></i> {device_id}</h2>
<p><strong>Status:</strong> {device_data['status']}</p>
<p><strong>Usage Hours:</strong> {device_data['usage_count']}</p>
<p><strong>Downtime (hrs):</strong> {downtime}</p>
<p><strong>Activity:</strong> <span class="anomaly-badge {anomaly_class}">{device_data['anomaly']}</span></p>
<p><strong>Log Type:</strong> {log_type}</p>
<p><strong>Last Log:</strong> {timestamp}</p>
<p><strong>AMC Expiry:</strong> {device_data['amc_expiry'].strftime('%Y-%m-%d')}</p>
</div>
""")
return "\n".join(html)
def generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path):
"""
Generate a detailed and easy-to-understand summary of the processing results, including downtime.
Returns a markdown string for display in the Gradio interface.
"""
summary = []
# Overview
summary.append("## Overview")
total_records = len(combined_df)
unique_devices = combined_df['equipment'].unique()
total_downtime = combined_df['downtime'].sum() if 'downtime' in combined_df.columns else 0
summary.append(f"We processed **{total_records} log entries** for **{len(unique_devices)} devices** ({', '.join(unique_devices)}).")
summary.append(f"Total downtime recorded: **{total_downtime} hours**.")
summary.append("This dashboard provides real-time insights into device health, usage patterns, and maintenance needs.\n")
# Downtime Insights (Anomalies)
summary.append("## Downtime Insights")
if anomaly_df is not None:
num_anomalies = sum(anomaly_df['anomaly'] == -1)
if num_anomalies > 0:
summary.append(f"**{num_anomalies} potential downtime risks** detected:")
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count', 'status', 'downtime']]
for _, row in anomaly_records.iterrows():
downtime = row['downtime'] if 'downtime' in row else 'N/A'
summary.append(f"- **{row['equipment']}** (Usage: {row['usage_count']}, Status: {row['status']}, Downtime: {downtime} hrs) - Indicates possible overuse or underuse.")
else:
summary.append("No potential downtime risks detected. All devices are operating within expected patterns.")
else:
summary.append("Unable to detect downtime risks due to an error.")
summary.append("\n")
# Maintenance Alerts (AMC Expiries)
summary.append("## Maintenance Alerts")
if amc_df is not None and not amc_df.empty:
unique_devices_amc = amc_df['equipment'].unique()
summary.append(f"**{len(unique_devices_amc)} devices** need maintenance soon (within 7 days from 2025-06-05):")
for _, row in amc_df.iterrows():
days_until_expiry = (row['amc_expiry'] - datetime(2025, 6, 5)).days
urgency = "Urgent" if days_until_expiry <= 3 else "Upcoming"
urgency_class = "alert-urgent" if urgency == "Urgent" else "alert-upcoming"
summary.append(f"- <span class='{urgency_class}'>⚠️ {urgency}</span>: **{row['equipment']}** - Due on {row['amc_expiry'].strftime('%Y-%m-%d')} ({days_until_expiry} days left)")
summary.append("\n<div class='recommendation'>Recommendation: Contact the maintenance team within 24 hours for urgent alerts at support@company.com.</div>")
else:
summary.append("No devices need maintenance within the next 7 days.")
summary.append("\n")
# Generated Reports
summary.append("## Generated Reports")
summary.append("- **Usage Chart**: Visualizes usage patterns across devices, helping identify overworked or underused equipment. See below for the chart.")
summary.append("- **PDF Report**: A comprehensive report including device logs, downtime insights, maintenance alerts, and a processing flowchart. Download it below.")
return "\n".join(summary)
def generate_flowchart_html():
"""
Generate an HTML representation of the flowchart for the Gradio interface.
Returns an HTML string.
"""
steps = [
("Upload CSV File(s)", "User uploads log files in CSV format."),
("Validate Data", "Checks for required columns (device_id, usage_hours, amc_date, status) and correct data types."),
("Generate Usage Chart", "Creates a bar chart showing usage hours by device and status (e.g., ok, warning)."),
("Detect Downtime Risks", "Uses Local Outlier Factor to identify devices with unusual usage patterns (e.g., too high or too low)."),
("Check Maintenance Dates", "Identifies devices with AMC expiries within 7 days from 2025-06-05."),
("Create PDF Report", "Generates a detailed PDF with data tables, insights, and this flowchart.")
]
html = ["<div class='flowchart'>"]
for step, description in steps:
html.append(f"<div class='flowchart-step'><strong>{step}</strong><br>{description}</div>")
html.append("</div>")
return "\n".join(html)
def process_files(uploaded_files):
"""
Process uploaded CSV files, generate usage plots, detect anomalies, and process AMC expiries.
Returns a dataframe, plot path, PDF path, AMC expiry message, summary, device cards HTML, and flowchart HTML.
"""
# Log received files
logging.info(f"Received uploaded files: {uploaded_files}")
if not uploaded_files:
logging.warning("No files uploaded.")
return None, None, None, "Please upload at least one valid CSV file.", "## Summary\nNo files uploaded.", "", ""
valid_files = [f for f in uploaded_files if f.name.endswith('.csv')]
logging.info(f"Processing {len(valid_files)} valid files: {valid_files}")
if not valid_files:
logging.warning("No valid CSV files uploaded.")
return None, None, None, "Please upload at least one valid CSV file.", "## Summary\nNo valid CSV files uploaded.", "", ""
logging.info("Loading logs from uploaded files...")
all_data = []
# Load and combine CSV files
for file in valid_files:
try:
# Read CSV with explicit delimiter and strip whitespace
df = pd.read_csv(file.name, delimiter=',', skipinitialspace=True)
# Log the columns for debugging
logging.info(f"Columns in {file.name}: {', '.join(df.columns)}")
# Validate CSV structure (renaming happens inside validate_csv now)
is_valid, error_msg = validate_csv(df)
if not is_valid:
logging.error(f"Failed to load {file.name}: {error_msg}")
return None, None, None, f"Error loading {file.name}: {error_msg}", f"## Summary\nError: {error_msg}", "", ""
all_data.append(df)
except Exception as e:
logging.error(f"Failed to load {file.name}: {str(e)}")
return None, None, None, f"Error loading {file.name}: {str(e)}", f"## Summary\nError: {str(e)}", "", ""
if not all_data:
logging.warning("No data loaded from uploaded files.")
return None, None, None, "No valid data found in uploaded files.", "## Summary\nNo data loaded.", "", ""
combined_df = pd.concat(all_data, ignore_index=True)
logging.info(f"Combined {len(combined_df)} total records.")
logging.info(f"Loaded {len(combined_df)} log records from uploaded files.")
# Generate usage plot
logging.info("Generating usage plot...")
plot_path = generate_usage_plot(combined_df)
if plot_path:
logging.info("Usage plot generated successfully.")
else:
logging.error("Failed to generate usage plot.")
return combined_df, None, None, "Failed to generate usage plot.", "## Summary\nUsage plot generation failed.", "", ""
# Detect anomalies using Local Outlier Factor
logging.info("Detecting anomalies using Local Outlier Factor...")
anomaly_df = detect_anomalies(combined_df)
if anomaly_df is None:
logging.error("Failed to detect anomalies.")
else:
logging.info(f"Detected {sum(anomaly_df['anomaly'] == -1)} anomalies using Local Outlier Factor.")
# Process AMC expiries
logging.info("Processing AMC expiries...")
amc_message, amc_df = process_amc_expiries(combined_df)
# Generate PDF report
logging.info("Generating PDF report...")
pdf_path = generate_pdf_report(combined_df, anomaly_df, amc_df)
if pdf_path:
logging.info("PDF report generated successfully.")
else:
logging.error("Failed to generate PDF report.")
# Generate summary
logging.info("Generating summary of results...")
summary = generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path)
logging.info("Summary generated successfully.")
# Generate device cards
logging.info("Generating device cards HTML...")
device_cards_html = generate_device_cards(combined_df, anomaly_df)
logging.info("Device cards HTML generated successfully.")
# Generate flowchart HTML
logging.info("Generating flowchart HTML...")
flowchart_html = generate_flowchart_html()
logging.info("Flowchart HTML generated successfully.")
# Prepare output dataframe (combine original data with anomalies)
output_df = combined_df.copy()
if anomaly_df is not None:
output_df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Unusual"})
return output_df, plot_path, pdf_path, amc_message, summary, device_cards_html, flowchart_html
def generate_usage_plot(df):
"""
Generate a bar plot of usage_count by equipment and status.
Returns the path to the saved plot.
"""
try:
plt.figure(figsize=(12, 6))
# Define colors for statuses (adjusted for dark theme visibility)
status_colors = {'ok': '#2DD4BF', 'warning': '#F87171', 'normal': '#10B981', 'down': '#FBBF24'}
for status in df['status'].unique():
subset = df[df['status'] == status]
plt.bar(
subset['equipment'] + f" ({status})",
subset['usage_count'],
label=status,
color=status_colors.get(status, '#6B7280')
)
plt.xlabel("Equipment (Status)", fontsize=12, color='#D1D5DB')
plt.ylabel("Usage Hours", fontsize=12, color='#D1D5DB')
plt.title("Device Usage Overview", fontsize=14, color='#FFFFFF')
plt.legend(title="Status")
plt.xticks(rotation=45, ha='right', color='#D1D5DB')
plt.yticks(color='#D1D5DB')
plt.gca().set_facecolor('#374151')
plt.gcf().set_facecolor('#1F2937')
plt.tight_layout()
# Save plot to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp:
plt.savefig(tmp.name, format='png', dpi=100)
plot_path = tmp.name
plt.close()
return plot_path
except Exception as e:
logging.error(f"Failed to generate usage plot: {str(e)}")
return None
def detect_anomalies(df):
"""
Detect anomalies in usage_count using Local Outlier Factor.
Returns a dataframe with an 'anomaly' column (-1 for anomalies, 1 for normal).
"""
try:
model = LocalOutlierFactor(n_neighbors=5, contamination=0.1)
anomalies = model.fit_predict(df[['usage_count']].values)
anomaly_df = df.copy()
anomaly_df['anomaly'] = anomalies
return anomaly_df
except Exception as e:
logging.error(f"Failed to detect anomalies: {str(e)}")
return None
def process_amc_expiries(df):
"""
Identify devices with AMC expiries within 7 days from 2025-06-05.
Returns a message and a dataframe of devices with upcoming expiries.
"""
try:
current_date = datetime(2025, 6, 5)
threshold = current_date + timedelta(days=7)
df['amc_expiry'] = pd.to_datetime(df['amc_expiry'])
upcoming_expiries = df[df['amc_expiry'] <= threshold]
unique_devices = upcoming_expiries['equipment'].unique()
message = f"Found {len(unique_devices)} devices with upcoming AMC expiries: {', '.join(unique_devices)}. Details: " + "; ".join(
[f"{row['equipment']}: {row['amc_expiry'].strftime('%Y-%m-%d')}" for _, row in upcoming_expiries.iterrows()]
)
logging.info(f"Found {len(unique_devices)} devices with upcoming AMC expiries.")
return message, upcoming_expiries
except Exception as e:
logging.error(f"Failed to process AMC expiries: {str(e)}")
return f"Error processing AMC expiries: {str(e)}", None
def generate_pdf_report(original_df, anomaly_df, amc_df):
"""
Generate a professionally formatted PDF report with necessary fields and a detailed flowchart.
Returns the path to the saved PDF.
"""
try:
if original_df is None or original_df.empty:
logging.warning("No data available for PDF generation.")
return None
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp:
c = canvas.Canvas(tmp.name, pagesize=letter)
width, height = letter
def draw_header():
c.setFont("Helvetica-Bold", 16)
c.setFillColor(colors.darkblue)
c.drawString(50, height - 50, "Multi-Device LabOps Dashboard Report")
c.setFont("Helvetica", 10)
c.setFillColor(colors.black)
c.drawString(50, height - 70, f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
c.line(50, height - 80, width - 50, height - 80)
def draw_section_title(title, y):
c.setFont("Helvetica-Bold", 14)
c.setFillColor(colors.darkblue)
c.drawString(50, y, title)
c.setFillColor(colors.black)
c.line(50, y - 5, width - 50, y - 5)
return y - 30
y = height - 100
draw_header()
# Summary
y = draw_section_title("Summary", y)
c.setFont("Helvetica", 12)
c.drawString(50, y, f"Total Records: {len(original_df)}")
y -= 20
c.drawString(50, y, f"Unique Devices: {', '.join(original_df['equipment'].unique())}")
y -= 20
total_downtime = original_df['downtime'].sum() if 'downtime' in original_df.columns else 0
c.drawString(50, y, f"Total Downtime: {total_downtime} hours")
y -= 40
# Device Log Details
y = draw_section_title("Device Log Details", y)
c.setFont("Helvetica-Bold", 10)
headers = ["Equipment", "Timestamp", "Usage Hours", "Downtime (hrs)", "Status", "Log Type", "AMC Expiry", "Activity"]
x_positions = [50, 110, 190, 260, 320, 370, 430, 490]
for i, header in enumerate(headers):
c.drawString(x_positions[i], y, header)
c.line(50, y - 5, width - 50, y - 5)
y -= 20
c.setFont("Helvetica", 10)
output_df = original_df.copy()
if anomaly_df is not None:
output_df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Unusual"})
for _, row in output_df.iterrows():
c.drawString(50, y, str(row['equipment']))
c.drawString(110, y, str(row.get('timestamp', 'N/A')))
c.drawString(190, y, str(row['usage_count']))
c.drawString(260, y, str(row.get('downtime', 'N/A')))
c.drawString(320, y, str(row['status']))
c.drawString(370, y, str(row.get('log_type', 'N/A')))
c.drawString(430, y, str(row['amc_expiry'].strftime('%Y-%m-%d')))
c.drawString(490, y, str(row['anomaly']))
y -= 20
if y < 50:
c.showPage()
y = height - 100
draw_header()
c.setFont("Helvetica", 10)
# Downtime Insights
y = draw_section_title("Downtime Insights (Using Local Outlier Factor)", y)
c.setFont("Helvetica", 12)
if anomaly_df is not None:
num_anomalies = sum(anomaly_df['anomaly'] == -1)
c.drawString(50, y, f"Potential Downtime Risks Detected: {num_anomalies}")
y -= 20
if num_anomalies > 0:
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count', 'status', 'downtime']]
c.drawString(50, y, "Details:")
y -= 20
c.setFont("Helvetica-Oblique", 10)
for _, row in anomaly_records.iterrows():
downtime = row['downtime'] if 'downtime' in row else 'N/A'
c.drawString(50, y, f"{row['equipment']}: Usage Hours = {row['usage_count']}, Status = {row['status']}, Downtime = {downtime} hrs")
y -= 20
c.drawString(70, y, "Note: This device’s usage is significantly higher or lower than others, which may indicate overuse or underuse.")
y -= 20
if y < 50:
c.showPage()
y = height - 100
draw_header()
c.setFont("Helvetica-Oblique", 10)
else:
c.drawString(50, y, "Unable to detect downtime risks due to an error.")
y -= 20
y -= 20
# AMC Expiries
y = draw_section_title("Maintenance Alerts (as of 2025-06-05)", y)
c.setFont("Helvetica", 12)
if amc_df is not None and not amc_df.empty:
c.drawString(50, y, f"Devices Needing Maintenance Soon: {len(amc_df['equipment'].unique())}")
y -= 20
# Table headers
c.setFont("Helvetica-Bold", 10)
headers = ["Device", "Expiry Date", "Urgency", "Days Left", "Action"]
x_positions = [50, 150, 250, 350, 450]
for i, header in enumerate(headers):
c.drawString(x_positions[i], y, header)
c.line(50, y - 5, width - 50, y - 5)
y -= 20
# Table rows
c.setFont("Helvetica", 10)
for _, row in amc_df.iterrows():
days_until_expiry = (row['amc_expiry'] - datetime(2025, 6, 5)).days
urgency = "Urgent" if days_until_expiry <= 3 else "Upcoming"
action = "Contact maintenance team within 24 hours" if urgency == "Urgent" else "Schedule maintenance this week"
c.drawString(50, y, str(row['equipment']))
c.drawString(150, y, str(row['amc_expiry'].strftime('%Y-%m-%d')))
c.drawString(250, y, urgency)
c.drawString(350, y, str(days_until_expiry))
c.drawString(450, y, action)
y -= 20
if y < 50:
c.showPage()
y = height - 100
draw_header()
c.setFont("Helvetica", 10)
c.setFont("Helvetica-Oblique", 10)
c.drawString(50, y, "Contact: Email the maintenance team at support@company.com for scheduling.")
y -= 20
else:
c.drawString(50, y, "No devices need maintenance within the next 7 days.")
y -= 20
y -= 20
# Flowchart
y = draw_section_title("Processing Pipeline Flowchart", y)
c.setFont("Helvetica", 10)
flowchart = [
("1. Upload CSV File(s)", "User uploads log files in CSV format containing device usage data."),
("2. Validate Data", "Ensures all required columns (device_id, usage_hours, amc_date, status) are present and data types are correct (e.g., usage_hours as numeric, amc_date as date)."),
("3. Generate Usage Chart", "Creates a bar chart showing usage hours by device and status (e.g., ok, warning) to visualize usage patterns."),
("4. Detect Downtime Risks", "Uses Local Outlier Factor (LOF) algorithm to identify devices with unusual usage patterns by comparing local density of usage counts (contamination=0.1, n_neighbors=5)."),
("5. Check Maintenance Dates", "Identifies devices with AMC expiries within 7 days from 2025-06-05, calculating days left and urgency (urgent if ≤3 days)."),
("6. Create PDF Report", "Generates this PDF with a data table, downtime insights, maintenance alerts, and this detailed flowchart.")
]
for step, description in flowchart:
c.drawString(50, y, step)
y -= 15
c.setFont("Helvetica-Oblique", 9)
c.drawString(70, y, description)
c.setFont("Helvetica", 10)
y -= 25
if y < 50:
c.showPage()
y = height - 100
draw_header()
c.setFont("Helvetica", 10)
c.showPage()
c.save()
return tmp.name
except Exception as e:
logging.error(f"Failed to generate PDF report: {str(e)}")
return None
# Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("# Multi-Device LabOps Dashboard")
with gr.Row():
file_input = gr.File(file_count="multiple", label="Upload Device Logs (CSV)")
process_button = gr.Button("Process Logs")
with gr.Row():
output_summary = gr.Markdown(label="Dashboard Summary", elem_classes=["card"])
with gr.Row(elem_classes=["dashboard-container"]):
output_device_cards = gr.HTML(label="Device Overview")
with gr.Row(elem_classes=["dashboard-container"]):
with gr.Column():
output_plot = gr.Image(label="Usage Chart", elem_classes=["card", "chart-container"])
with gr.Column():
output_message = gr.Textbox(label="Maintenance Alerts", elem_classes=["card", "alert-card"])
with gr.Row(elem_classes=["dashboard-container"]):
output_df = gr.Dataframe(label="Device Logs", elem_classes=["card", "dataframe-container"])
with gr.Row(elem_classes=["dashboard-container"]):
output_flowchart = gr.HTML(label="Processing Flowchart", elem_classes=["card", "flowchart-container"])
with gr.Row(elem_classes=["dashboard-container"]):
with gr.Column():
output_pdf = gr.File(label="Download Detailed Report", elem_classes=["card"])
process_button.click(
fn=process_files,
inputs=[file_input],
outputs=[output_df, output_plot, output_pdf, output_message, output_summary, output_device_cards, output_flowchart]
)
if __name__ == "__main__":
logging.info("Application starting...")
demo.launch(server_name="0.0.0.0", server_port=7860) |