Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import matplotlib.pyplot as plt
|
4 |
-
from sklearn.
|
5 |
from datetime import datetime, timedelta
|
6 |
import os
|
7 |
import logging
|
@@ -29,24 +29,69 @@ def validate_csv(df):
|
|
29 |
return False, f"Invalid data types: {str(e)}"
|
30 |
return True, ""
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def process_files(uploaded_files):
|
33 |
"""
|
34 |
Process uploaded CSV files, generate usage plots, detect anomalies, and process AMC expiries.
|
35 |
-
Returns a dataframe, plot path, PDF path,
|
36 |
"""
|
37 |
# Log received files
|
38 |
logging.info(f"Received uploaded files: {uploaded_files}")
|
39 |
|
40 |
if not uploaded_files:
|
41 |
logging.warning("No files uploaded.")
|
42 |
-
return None, None, None, "Please upload at least one valid CSV file."
|
43 |
|
44 |
valid_files = [f for f in uploaded_files if f.name.endswith('.csv')]
|
45 |
logging.info(f"Processing {len(valid_files)} valid files: {valid_files}")
|
46 |
|
47 |
if not valid_files:
|
48 |
logging.warning("No valid CSV files uploaded.")
|
49 |
-
return None, None, None, "Please upload at least one valid CSV file."
|
50 |
|
51 |
logging.info("Loading logs from uploaded files...")
|
52 |
all_data = []
|
@@ -60,15 +105,15 @@ def process_files(uploaded_files):
|
|
60 |
is_valid, error_msg = validate_csv(df)
|
61 |
if not is_valid:
|
62 |
logging.error(f"Failed to load {file.name}: {error_msg}")
|
63 |
-
return None, None, None, f"Error loading {file.name}: {error_msg}"
|
64 |
all_data.append(df)
|
65 |
except Exception as e:
|
66 |
logging.error(f"Failed to load {file.name}: {str(e)}")
|
67 |
-
return None, None, None, f"Error loading {file.name}: {str(e)}"
|
68 |
|
69 |
if not all_data:
|
70 |
logging.warning("No data loaded from uploaded files.")
|
71 |
-
return None, None, None, "No valid data found in uploaded files."
|
72 |
|
73 |
combined_df = pd.concat(all_data, ignore_index=True)
|
74 |
logging.info(f"Combined {len(combined_df)} total records.")
|
@@ -81,15 +126,15 @@ def process_files(uploaded_files):
|
|
81 |
logging.info("Usage plot generated successfully.")
|
82 |
else:
|
83 |
logging.error("Failed to generate usage plot.")
|
84 |
-
return combined_df, None, None, "Failed to generate usage plot."
|
85 |
|
86 |
-
# Detect anomalies
|
87 |
-
logging.info("Detecting anomalies...")
|
88 |
anomaly_df = detect_anomalies(combined_df)
|
89 |
if anomaly_df is None:
|
90 |
logging.error("Failed to detect anomalies.")
|
91 |
else:
|
92 |
-
logging.info(f"Detected {sum(anomaly_df['anomaly'] == -1)} anomalies.")
|
93 |
|
94 |
# Process AMC expiries
|
95 |
logging.info("Processing AMC expiries...")
|
@@ -98,12 +143,17 @@ def process_files(uploaded_files):
|
|
98 |
# Generate PDF report
|
99 |
pdf_path = generate_pdf_report(combined_df, anomaly_df, amc_df)
|
100 |
|
|
|
|
|
|
|
|
|
|
|
101 |
# Prepare output dataframe (combine original data with anomalies)
|
102 |
output_df = combined_df.copy()
|
103 |
if anomaly_df is not None:
|
104 |
output_df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Anomaly"})
|
105 |
|
106 |
-
return output_df, plot_path, pdf_path, amc_message
|
107 |
|
108 |
def generate_usage_plot(df):
|
109 |
"""
|
@@ -141,11 +191,11 @@ def generate_usage_plot(df):
|
|
141 |
|
142 |
def detect_anomalies(df):
|
143 |
"""
|
144 |
-
Detect anomalies in usage_count using
|
145 |
Returns a dataframe with an 'anomaly' column (-1 for anomalies, 1 for normal).
|
146 |
"""
|
147 |
try:
|
148 |
-
model =
|
149 |
anomalies = model.fit_predict(df[['usage_count']].values)
|
150 |
anomaly_df = df.copy()
|
151 |
anomaly_df['anomaly'] = anomalies
|
@@ -165,7 +215,9 @@ def process_amc_expiries(df):
|
|
165 |
df['amc_expiry'] = pd.to_datetime(df['amc_expiry'])
|
166 |
upcoming_expiries = df[df['amc_expiry'] <= threshold]
|
167 |
unique_devices = upcoming_expiries['equipment'].unique()
|
168 |
-
message = f"Found {len(unique_devices)} devices with upcoming AMC expiries: {', '.join(unique_devices)}."
|
|
|
|
|
169 |
logging.info(f"Found {len(unique_devices)} devices with upcoming AMC expiries.")
|
170 |
return message, upcoming_expiries
|
171 |
except Exception as e:
|
@@ -189,38 +241,44 @@ def generate_pdf_report(original_df, anomaly_df, amc_df):
|
|
189 |
c.setFont("Helvetica", 12)
|
190 |
y = 720
|
191 |
|
|
|
|
|
|
|
|
|
|
|
192 |
# Summary
|
193 |
c.drawString(100, y, "Summary")
|
194 |
y -= 20
|
195 |
c.drawString(100, y, f"Total Records: {len(original_df)}")
|
196 |
y -= 20
|
197 |
-
c.drawString(100, y, f"Devices: {', '.join(original_df['equipment'].unique())}")
|
198 |
y -= 40
|
199 |
|
200 |
# Anomalies
|
201 |
-
c.drawString(100, y, "Anomaly Detection Results")
|
202 |
y -= 20
|
203 |
if anomaly_df is not None:
|
204 |
num_anomalies = sum(anomaly_df['anomaly'] == -1)
|
205 |
c.drawString(100, y, f"Anomalies Detected: {num_anomalies}")
|
206 |
y -= 20
|
207 |
if num_anomalies > 0:
|
208 |
-
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count']]
|
209 |
c.drawString(100, y, "Anomalous Records:")
|
210 |
y -= 20
|
211 |
for _, row in anomaly_records.iterrows():
|
212 |
-
c.drawString(100, y, f"{row['equipment']}: Usage Count = {row['usage_count']}")
|
213 |
y -= 20
|
214 |
if y < 50:
|
215 |
c.showPage()
|
216 |
y = 750
|
|
|
217 |
else:
|
218 |
c.drawString(100, y, "Anomaly detection failed.")
|
219 |
y -= 20
|
220 |
y -= 20
|
221 |
|
222 |
# AMC Expiries
|
223 |
-
c.drawString(100, y, "AMC Expiries Within 7 Days")
|
224 |
y -= 20
|
225 |
if amc_df is not None and not amc_df.empty:
|
226 |
c.drawString(100, y, f"Devices with Upcoming AMC Expiries: {len(amc_df['equipment'].unique())}")
|
@@ -231,6 +289,7 @@ def generate_pdf_report(original_df, anomaly_df, amc_df):
|
|
231 |
if y < 50:
|
232 |
c.showPage()
|
233 |
y = 750
|
|
|
234 |
else:
|
235 |
c.drawString(100, y, "No AMC expiry data available.")
|
236 |
y -= 20
|
@@ -254,11 +313,13 @@ with gr.Blocks() as demo:
|
|
254 |
with gr.Row():
|
255 |
output_message = gr.Textbox(label="AMC Expiry Status")
|
256 |
output_pdf = gr.File(label="Download PDF Report")
|
|
|
|
|
257 |
|
258 |
process_button.click(
|
259 |
fn=process_files,
|
260 |
inputs=[file_input],
|
261 |
-
outputs=[output_df, output_plot, output_pdf, output_message]
|
262 |
)
|
263 |
|
264 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import matplotlib.pyplot as plt
|
4 |
+
from sklearn.neighbors import LocalOutlierFactor
|
5 |
from datetime import datetime, timedelta
|
6 |
import os
|
7 |
import logging
|
|
|
29 |
return False, f"Invalid data types: {str(e)}"
|
30 |
return True, ""
|
31 |
|
32 |
+
def generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path):
|
33 |
+
"""
|
34 |
+
Generate a detailed summary of the processing results.
|
35 |
+
Returns a markdown string for display in the Gradio interface.
|
36 |
+
"""
|
37 |
+
summary = ["## Processing Summary\n"]
|
38 |
+
|
39 |
+
# Total records and devices
|
40 |
+
total_records = len(combined_df)
|
41 |
+
unique_devices = combined_df['equipment'].unique()
|
42 |
+
summary.append(f"- **Total Records Processed**: {total_records}")
|
43 |
+
summary.append(f"- **Unique Devices**: {len(unique_devices)} ({', '.join(unique_devices)})\n")
|
44 |
+
|
45 |
+
# Anomalies
|
46 |
+
if anomaly_df is not None:
|
47 |
+
num_anomalies = sum(anomaly_df['anomaly'] == -1)
|
48 |
+
summary.append(f"- **Anomalies Detected**: {num_anomalies}")
|
49 |
+
if num_anomalies > 0:
|
50 |
+
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count', 'status']]
|
51 |
+
summary.append(" **Anomalous Devices**:")
|
52 |
+
for _, row in anomaly_records.iterrows():
|
53 |
+
summary.append(f" - {row['equipment']} (Usage: {row['usage_count']}, Status: {row['status']})")
|
54 |
+
else:
|
55 |
+
summary.append(" No anomalies detected.")
|
56 |
+
else:
|
57 |
+
summary.append("- **Anomalies Detected**: Failed to detect anomalies.")
|
58 |
+
summary.append("\n")
|
59 |
+
|
60 |
+
# AMC Expiries
|
61 |
+
if amc_df is not None and not amc_df.empty:
|
62 |
+
unique_devices_amc = amc_df['equipment'].unique()
|
63 |
+
summary.append(f"- **Devices with Upcoming AMC Expiries (within 7 days)**: {len(unique_devices_amc)}")
|
64 |
+
summary.append(" **Details**:")
|
65 |
+
for _, row in amc_df.iterrows():
|
66 |
+
summary.append(f" - {row['equipment']}: {row['amc_expiry'].strftime('%Y-%m-%d')}")
|
67 |
+
else:
|
68 |
+
summary.append("- **Devices with Upcoming AMC Expiries**: None")
|
69 |
+
summary.append("\n")
|
70 |
+
|
71 |
+
# Plot and PDF
|
72 |
+
summary.append("- **Usage Plot**: " + ("Generated successfully." if plot_path else "Failed to generate."))
|
73 |
+
summary.append("- **PDF Report**: " + ("Available for download." if pdf_path else "Not generated."))
|
74 |
+
|
75 |
+
return "\n".join(summary)
|
76 |
+
|
77 |
def process_files(uploaded_files):
|
78 |
"""
|
79 |
Process uploaded CSV files, generate usage plots, detect anomalies, and process AMC expiries.
|
80 |
+
Returns a dataframe, plot path, PDF path, AMC expiry message, and summary.
|
81 |
"""
|
82 |
# Log received files
|
83 |
logging.info(f"Received uploaded files: {uploaded_files}")
|
84 |
|
85 |
if not uploaded_files:
|
86 |
logging.warning("No files uploaded.")
|
87 |
+
return None, None, None, "Please upload at least one valid CSV file.", "No files uploaded."
|
88 |
|
89 |
valid_files = [f for f in uploaded_files if f.name.endswith('.csv')]
|
90 |
logging.info(f"Processing {len(valid_files)} valid files: {valid_files}")
|
91 |
|
92 |
if not valid_files:
|
93 |
logging.warning("No valid CSV files uploaded.")
|
94 |
+
return None, None, None, "Please upload at least one valid CSV file.", "No valid CSV files uploaded."
|
95 |
|
96 |
logging.info("Loading logs from uploaded files...")
|
97 |
all_data = []
|
|
|
105 |
is_valid, error_msg = validate_csv(df)
|
106 |
if not is_valid:
|
107 |
logging.error(f"Failed to load {file.name}: {error_msg}")
|
108 |
+
return None, None, None, f"Error loading {file.name}: {error_msg}", f"Error: {error_msg}"
|
109 |
all_data.append(df)
|
110 |
except Exception as e:
|
111 |
logging.error(f"Failed to load {file.name}: {str(e)}")
|
112 |
+
return None, None, None, f"Error loading {file.name}: {str(e)}", f"Error: {str(e)}"
|
113 |
|
114 |
if not all_data:
|
115 |
logging.warning("No data loaded from uploaded files.")
|
116 |
+
return None, None, None, "No valid data found in uploaded files.", "No data loaded."
|
117 |
|
118 |
combined_df = pd.concat(all_data, ignore_index=True)
|
119 |
logging.info(f"Combined {len(combined_df)} total records.")
|
|
|
126 |
logging.info("Usage plot generated successfully.")
|
127 |
else:
|
128 |
logging.error("Failed to generate usage plot.")
|
129 |
+
return combined_df, None, None, "Failed to generate usage plot.", "Usage plot generation failed."
|
130 |
|
131 |
+
# Detect anomalies using Local Outlier Factor
|
132 |
+
logging.info("Detecting anomalies using Local Outlier Factor...")
|
133 |
anomaly_df = detect_anomalies(combined_df)
|
134 |
if anomaly_df is None:
|
135 |
logging.error("Failed to detect anomalies.")
|
136 |
else:
|
137 |
+
logging.info(f"Detected {sum(anomaly_df['anomaly'] == -1)} anomalies using Local Outlier Factor.")
|
138 |
|
139 |
# Process AMC expiries
|
140 |
logging.info("Processing AMC expiries...")
|
|
|
143 |
# Generate PDF report
|
144 |
pdf_path = generate_pdf_report(combined_df, anomaly_df, amc_df)
|
145 |
|
146 |
+
# Generate summary
|
147 |
+
logging.info("Generating summary of results...")
|
148 |
+
summary = generate_summary(combined_df, anomaly_df, amc_df, plot_path, pdf_path)
|
149 |
+
logging.info("Summary generated successfully.")
|
150 |
+
|
151 |
# Prepare output dataframe (combine original data with anomalies)
|
152 |
output_df = combined_df.copy()
|
153 |
if anomaly_df is not None:
|
154 |
output_df['anomaly'] = anomaly_df['anomaly'].map({1: "Normal", -1: "Anomaly"})
|
155 |
|
156 |
+
return output_df, plot_path, pdf_path, amc_message, summary
|
157 |
|
158 |
def generate_usage_plot(df):
|
159 |
"""
|
|
|
191 |
|
192 |
def detect_anomalies(df):
|
193 |
"""
|
194 |
+
Detect anomalies in usage_count using Local Outlier Factor.
|
195 |
Returns a dataframe with an 'anomaly' column (-1 for anomalies, 1 for normal).
|
196 |
"""
|
197 |
try:
|
198 |
+
model = LocalOutlierFactor(n_neighbors=5, contamination=0.1)
|
199 |
anomalies = model.fit_predict(df[['usage_count']].values)
|
200 |
anomaly_df = df.copy()
|
201 |
anomaly_df['anomaly'] = anomalies
|
|
|
215 |
df['amc_expiry'] = pd.to_datetime(df['amc_expiry'])
|
216 |
upcoming_expiries = df[df['amc_expiry'] <= threshold]
|
217 |
unique_devices = upcoming_expiries['equipment'].unique()
|
218 |
+
message = f"Found {len(unique_devices)} devices with upcoming AMC expiries: {', '.join(unique_devices)}. Details: " + "; ".join(
|
219 |
+
[f"{row['equipment']}: {row['amc_expiry'].strftime('%Y-%m-%d')}" for _, row in upcoming_expiries.iterrows()]
|
220 |
+
)
|
221 |
logging.info(f"Found {len(unique_devices)} devices with upcoming AMC expiries.")
|
222 |
return message, upcoming_expiries
|
223 |
except Exception as e:
|
|
|
241 |
c.setFont("Helvetica", 12)
|
242 |
y = 720
|
243 |
|
244 |
+
# Report generated timestamp
|
245 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
246 |
+
c.drawString(100, y, f"Generated on: {current_time}")
|
247 |
+
y -= 30
|
248 |
+
|
249 |
# Summary
|
250 |
c.drawString(100, y, "Summary")
|
251 |
y -= 20
|
252 |
c.drawString(100, y, f"Total Records: {len(original_df)}")
|
253 |
y -= 20
|
254 |
+
c.drawString(100, y, f"Unique Devices: {', '.join(original_df['equipment'].unique())}")
|
255 |
y -= 40
|
256 |
|
257 |
# Anomalies
|
258 |
+
c.drawString(100, y, "Anomaly Detection Results (Using Local Outlier Factor)")
|
259 |
y -= 20
|
260 |
if anomaly_df is not None:
|
261 |
num_anomalies = sum(anomaly_df['anomaly'] == -1)
|
262 |
c.drawString(100, y, f"Anomalies Detected: {num_anomalies}")
|
263 |
y -= 20
|
264 |
if num_anomalies > 0:
|
265 |
+
anomaly_records = anomaly_df[anomaly_df['anomaly'] == -1][['equipment', 'usage_count', 'status']]
|
266 |
c.drawString(100, y, "Anomalous Records:")
|
267 |
y -= 20
|
268 |
for _, row in anomaly_records.iterrows():
|
269 |
+
c.drawString(100, y, f"{row['equipment']}: Usage Count = {row['usage_count']}, Status = {row['status']}")
|
270 |
y -= 20
|
271 |
if y < 50:
|
272 |
c.showPage()
|
273 |
y = 750
|
274 |
+
c.setFont("Helvetica", 12)
|
275 |
else:
|
276 |
c.drawString(100, y, "Anomaly detection failed.")
|
277 |
y -= 20
|
278 |
y -= 20
|
279 |
|
280 |
# AMC Expiries
|
281 |
+
c.drawString(100, y, "AMC Expiries Within 7 Days (as of 2025-06-05)")
|
282 |
y -= 20
|
283 |
if amc_df is not None and not amc_df.empty:
|
284 |
c.drawString(100, y, f"Devices with Upcoming AMC Expiries: {len(amc_df['equipment'].unique())}")
|
|
|
289 |
if y < 50:
|
290 |
c.showPage()
|
291 |
y = 750
|
292 |
+
c.setFont("Helvetica", 12)
|
293 |
else:
|
294 |
c.drawString(100, y, "No AMC expiry data available.")
|
295 |
y -= 20
|
|
|
313 |
with gr.Row():
|
314 |
output_message = gr.Textbox(label="AMC Expiry Status")
|
315 |
output_pdf = gr.File(label="Download PDF Report")
|
316 |
+
with gr.Row():
|
317 |
+
output_summary = gr.Markdown(label="Summary of Results")
|
318 |
|
319 |
process_button.click(
|
320 |
fn=process_files,
|
321 |
inputs=[file_input],
|
322 |
+
outputs=[output_df, output_plot, output_pdf, output_message, output_summary]
|
323 |
)
|
324 |
|
325 |
if __name__ == "__main__":
|