Spaces:
Sleeping
Sleeping
File size: 9,270 Bytes
c010699 6ac4ea2 0e6072b c010699 6ac4ea2 c010699 6ac4ea2 c010699 6ac4ea2 c010699 6ac4ea2 c010699 6ac4ea2 c010699 6ac4ea2 c010699 0e6072b 6ac4ea2 c010699 6ac4ea2 c010699 0e6072b 6ac4ea2 c010699 6ac4ea2 c010699 6ac4ea2 0e6072b 6ac4ea2 c010699 6ac4ea2 0e6072b 6ac4ea2 0e6072b c010699 0e6072b c010699 6ac4ea2 0e6072b c010699 0e6072b c010699 6ac4ea2 0e6072b c010699 0e6072b c010699 6ac4ea2 0e6072b c010699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import re
import time
import random
import gradio as gr
from huggingface_hub import InferenceClient
# Optional: Enable scraping if your site is deployed.
ENABLE_SCRAPING = False
SITE_URL = "https://your-agri-future-site.com"
# Global variable to hold scraped content
knowledge_base = ""
# --- Optional: Scraping Functionality ---
if ENABLE_SCRAPING:
try:
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
def scrape_site(url):
options = Options()
options.headless = True # Run browser in headless mode.
driver = webdriver.Chrome(options=options)
driver.get(url)
# Use explicit waits in production code; here we use a simple sleep.
time.sleep(5)
try:
# Customize the selector as per your site's HTML structure.
content_element = driver.find_element(By.ID, "content")
page_text = content_element.text
except Exception as e:
page_text = "Error encountered during scraping: " + str(e)
driver.quit()
return page_text
knowledge_base = scrape_site(SITE_URL)
print("Scraped knowledge base successfully.")
except Exception as e:
print("Scraping failed or Selenium is not configured:", e)
else:
print("Scraping is disabled; proceeding without scraped site content.")
# --- Multilingual Helpers ---
# Language-specific greeting detection
def is_greeting(query: str, lang: str) -> bool:
greetings = {
"en": ["hello", "hi", "hey", "good morning", "good afternoon", "good evening"],
"fr": ["bonjour", "salut", "coucou", "bonsoir"],
"am": ["ሰላም", "ሰላም እንደምን", "እንዴት"]
}
# Retrieve greetings for the provided language; default to English if unavailable.
greet_list = greetings.get(lang, greetings["en"])
# For Amharic, no transformation; for Latin scripts, convert to lower case.
if lang != "am":
query = query.lower()
return any(query.startswith(greet) for greet in greet_list)
# Language-specific out-of-scope messages
def get_out_of_scope_message(lang: str) -> str:
messages = {
"en": [
"I appreciate your curiosity. However, my expertise lies exclusively in agricultural and agro-investment insights. Could you please frame your question accordingly?",
"That’s an interesting thought, but I'm tailored specifically for topics concerning agriculture and agro-investment. Please ask a question within that realm.",
"While I value your inquiry, I'm optimized to provide insights solely on agriculture and related investment matters. Could you rephrase your query to align with these topics?",
"It appears your question may not be directly tied to agriculture or agro-investment. Please ask something along those lines so I can assist effectively."
],
"fr": [
"J'apprécie votre curiosité. Cependant, mon expertise se limite exclusivement aux informations sur l'agriculture et les investissements agroalimentaires. Pourriez-vous reformuler votre question en ce sens ?",
"C'est une pensée intéressante, mais je suis spécialisé dans les domaines de l'agriculture et des investissements agroalimentaires. Merci de poser une question dans ce domaine.",
"Bien que votre question soit pertinente, je me concentre uniquement sur l'agriculture et les investissements associés. Pourriez-vous reformuler votre demande en conséquence ?",
"Votre interrogation semble éloignée de l'agriculture ou des investissements agroalimentaires. Merci de poser une question dans ces domaines pour que je puisse vous aider efficacement."
],
"am": [
"እባክዎ ልጠይቁት ጥያቄ በተለይ በግብርናና በአገልግሎት ስርዓተ-ቢዝነስ ዙሪያ መሆኑን አላስቀምጥም። እባኮትን ጥያቄዎን እንደዚህ በማቅረብ ደግሞ ይሞክሩ።",
"ልዩ ጥያቄዎችን ማቅረብ ይፈልጋሉ እንጂ፣ እኔ በተለይ በግብርናና በአገልግሎት ስርዓተ-ቢዝነስ ጥያቄዎች ላይ ብቻ እንደሚሰራ ተዘጋጅቻለሁ። እባክዎ ጥያቄዎን በእነዚህ ክስተቶች ውስጥ ያቅርቡ።",
"እንደምታዩት ጥያቄዎ በግብርና ወይም በአገልግሎት ስርዓተ-ቢዝነስ ላይ የተመረጠ አይደለም። እባክዎ በዚህ አውድ የሆነ ጥያቄ ይጠይቁ።"
]
}
# Return a random message for the given language; default to English if not available.
return random.choice(messages.get(lang, messages["en"]))
# Helper to determine if a query is relevant to our domain (English check only; can be expanded).
def is_domain_query(query: str) -> bool:
domain_keywords = [
"agriculture", "farming", "crop", "agro", "investment", "soil",
"irrigation", "harvest", "organic", "sustainable", "agribusiness",
"livestock", # additional English keywords
"agriculture", "agroalimentaire", "agriculture durable" # French terms can also be included
]
return any(re.search(r"\b" + keyword + r"\b", query, re.IGNORECASE) for keyword in domain_keywords)
def retrieve_relevant_snippet(query: str, text: str, max_length: int = 300) -> str:
"""
A simple retrieval function that searches for sentences in the text
containing domain keywords from the query.
Returns a snippet limited to max_length characters.
"""
sentences = re.split(r'[.?!]', text)
for sentence in sentences:
if is_domain_query(sentence) and all(word.lower() in sentence.lower() for word in query.split()):
snippet = sentence.strip()
return snippet[:max_length] + "..." if len(snippet) > max_length else snippet
return ""
# --- Chat Assistant Response Function ---
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, language):
# language is expected as a string code: "en", "fr", or "am"
# Check for a greeting in the appropriate language.
if is_greeting(message, language):
greetings = {
"en": "Hello! How can I assist you today with your agriculture or agro-investment inquiries?",
"fr": "Bonjour! Comment puis-je vous aider aujourd'hui en matière d'agriculture ou d'investissements agroalimentaires?",
"am": "ሰላም! ዛሬ ስለ ግብርና ወይም ስለ አገልግሎት ስርዓተ-ቢዝነስ ጥያቄዎች እንዴት ልረዳዎት?"
}
yield greetings.get(language, greetings["en"])
return
# If the query is not recognized as domain related, return an out-of-scope message.
if not is_domain_query(message):
yield get_out_of_scope_message(language)
return
# Build conversation context starting with the system message.
messages_context = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
messages_context.append({"role": "user", "content": user_msg})
if assistant_msg:
messages_context.append({"role": "assistant", "content": assistant_msg})
# Optional: Append retrieved context from scraped site content.
if knowledge_base:
snippet = retrieve_relevant_snippet(message, knowledge_base)
if snippet:
retrieval_context = f"Reference info from Agri Future Investment platform: {snippet}"
messages_context.insert(0, {"role": "system", "content": retrieval_context})
# Append the new user message.
messages_context.append({"role": "user", "content": message})
# Stream the model's reply token-by-token.
response = ""
for message_resp in client.chat_completion(
messages_context,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message_resp.choices[0].delta.content
response += token
yield response
# --- Gradio Chat Interface ---
# The language selection dropdown uses language codes: "en" for English, "fr" for French, "am" for Amharic.
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are AgriFutureBot, designed to help visitors of the Agri Future Investment platform understand content about the site and answer questions strictly related to agriculture and agro-investment topics.",
label="System Message"
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"),
gr.Dropdown(choices=["en", "fr", "am"], value="en", label="Language (en, fr, am)")
],
)
if __name__ == "__main__":
demo.launch() |