Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,125 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
if
|
24 |
-
|
|
|
|
|
25 |
|
|
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
|
|
28 |
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
messages,
|
32 |
max_tokens=max_tokens,
|
33 |
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
-
token =
|
38 |
-
|
39 |
response += token
|
40 |
yield response
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
49 |
-
gr.Textbox(
|
50 |
-
|
51 |
-
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
),
|
|
|
|
|
|
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import re
|
2 |
+
import time
|
3 |
import gradio as gr
|
4 |
from huggingface_hub import InferenceClient
|
5 |
|
6 |
+
# Optional: Enable scraping if your site is deployed.
|
7 |
+
# Set this flag to False until your site is available.
|
8 |
+
ENABLE_SCRAPING = False
|
9 |
+
SITE_URL = "https://your-agri-future-site.com"
|
10 |
+
|
11 |
+
# Global variable to hold scraped content
|
12 |
+
knowledge_base = ""
|
13 |
+
|
14 |
+
# --- Optional: Scraping Functionality ---
|
15 |
+
if ENABLE_SCRAPING:
|
16 |
+
try:
|
17 |
+
from selenium import webdriver
|
18 |
+
from selenium.webdriver.chrome.options import Options
|
19 |
+
from selenium.webdriver.common.by import By
|
20 |
+
|
21 |
+
def scrape_site(url):
|
22 |
+
options = Options()
|
23 |
+
options.headless = True # Run browser in headless mode.
|
24 |
+
driver = webdriver.Chrome(options=options)
|
25 |
+
driver.get(url)
|
26 |
+
# Use explicit wait in production code; here we use a simple sleep.
|
27 |
+
time.sleep(5)
|
28 |
+
try:
|
29 |
+
# Customize the selector based on your site’s HTML
|
30 |
+
content_element = driver.find_element(By.ID, "content")
|
31 |
+
page_text = content_element.text
|
32 |
+
except Exception as e:
|
33 |
+
page_text = "Error encountered during scraping: " + str(e)
|
34 |
+
driver.quit()
|
35 |
+
return page_text
|
36 |
+
|
37 |
+
knowledge_base = scrape_site(SITE_URL)
|
38 |
+
print("Scraped knowledge base successfully.")
|
39 |
+
except Exception as e:
|
40 |
+
print("Scraping failed or Selenium is not configured:", e)
|
41 |
+
else:
|
42 |
+
print("Scraping is disabled; proceeding without scraped site content.")
|
43 |
+
|
44 |
+
# --- Domain-Related Helpers ---
|
45 |
+
def is_domain_query(query: str) -> bool:
|
46 |
+
"""Check if the query is relevant to agriculture and agro-investment."""
|
47 |
+
domain_keywords = [
|
48 |
+
"agriculture", "farming", "crop", "agro", "investment", "soil",
|
49 |
+
"irrigation", "harvest", "organic", "sustainable", "agribusiness",
|
50 |
+
"livestock"
|
51 |
+
]
|
52 |
+
return any(re.search(r"\b" + keyword + r"\b", query, re.IGNORECASE) for keyword in domain_keywords)
|
53 |
+
|
54 |
+
def retrieve_relevant_snippet(query: str, text: str, max_length: int = 300) -> str:
|
55 |
+
"""
|
56 |
+
A simple retrieval function that searches for any sentence in the text
|
57 |
+
that contains domain keywords present in the query.
|
58 |
+
Returns a snippet limited to max_length characters.
|
59 |
+
"""
|
60 |
+
sentences = re.split(r'[.?!]', text)
|
61 |
+
for sentence in sentences:
|
62 |
+
if is_domain_query(sentence) and all(word.lower() in sentence.lower() for word in query.split()):
|
63 |
+
snippet = sentence.strip()
|
64 |
+
if len(snippet) > max_length:
|
65 |
+
snippet = snippet[:max_length] + "..."
|
66 |
+
return snippet
|
67 |
+
return ""
|
68 |
+
|
69 |
+
# --- Chat Assistant Response Function ---
|
70 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
71 |
|
72 |
+
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
73 |
+
# Check domain relevance
|
74 |
+
if not is_domain_query(message):
|
75 |
+
yield "I'm sorry, but please ask a question related to agriculture or agro-investment topics."
|
76 |
+
return
|
77 |
|
78 |
+
# Build the conversation context starting with the system message.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
messages = [{"role": "system", "content": system_message}]
|
80 |
+
for user_msg, assistant_msg in history:
|
81 |
+
if user_msg:
|
82 |
+
messages.append({"role": "user", "content": user_msg})
|
83 |
+
if assistant_msg:
|
84 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
85 |
|
86 |
+
# Optional: Append a retrieval-based context derived from the scraped content.
|
87 |
+
if knowledge_base:
|
88 |
+
snippet = retrieve_relevant_snippet(message, knowledge_base)
|
89 |
+
if snippet:
|
90 |
+
# Prepend additional context for the model to take into account.
|
91 |
+
retrieval_context = f"Reference information from Agri Future Investment platform: {snippet}"
|
92 |
+
messages.insert(0, {"role": "system", "content": retrieval_context})
|
93 |
|
94 |
+
# Append the new user query.
|
95 |
messages.append({"role": "user", "content": message})
|
96 |
|
97 |
+
# Stream the model's reply token-by-token.
|
98 |
response = ""
|
99 |
+
for message_resp in client.chat_completion(
|
|
|
100 |
messages,
|
101 |
max_tokens=max_tokens,
|
102 |
stream=True,
|
103 |
temperature=temperature,
|
104 |
top_p=top_p,
|
105 |
):
|
106 |
+
token = message_resp.choices[0].delta.content
|
|
|
107 |
response += token
|
108 |
yield response
|
109 |
|
110 |
+
# --- Gradio Chat Interface ---
|
|
|
|
|
|
|
111 |
demo = gr.ChatInterface(
|
112 |
respond,
|
113 |
additional_inputs=[
|
114 |
+
gr.Textbox(
|
115 |
+
value="You are AgriFutureBot, designed to help visitors of the Agri Future Investment platform understand content about the site and answer questions strictly related to agriculture and agro-investment topics.",
|
116 |
+
label="System Message"
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
),
|
118 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
|
119 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
120 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"),
|
121 |
],
|
122 |
)
|
123 |
|
|
|
124 |
if __name__ == "__main__":
|
125 |
+
demo.launch()
|