MLDeveloper commited on
Commit
4158e15
·
verified ·
1 Parent(s): 17e052c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -44
app.py CHANGED
@@ -4,20 +4,15 @@ from sklearn.linear_model import LinearRegression
4
  import matplotlib.pyplot as plt
5
 
6
  # Page configuration
7
- st.set_page_config(page_title="Crime Rate Prediction", layout="wide")
8
- st.title("📊 Crime Rate Prediction Based on Past Data")
9
 
10
- # CSV path (ensure the file is accessible or uploaded in cloud deployment)
11
  csv_path = "https://huggingface.co/spaces/MLDeveloper/crime_rate_predicition/resolve/main/RS_Session_255_AS_116.1%20(2).csv"
12
 
13
  try:
14
- # Load dataset
15
  df = pd.read_csv(csv_path)
16
-
17
- st.subheader("📄 Raw Dataset")
18
- st.dataframe(df)
19
-
20
- # Preprocessing
21
  data = df[[
22
  'State/UT',
23
  'Number of Cases Registered - 2018-19',
@@ -26,50 +21,47 @@ try:
26
  'Number of Cases Registered - 2021-22 (up to 31.10.2021)'
27
  ]].copy()
28
  data.columns = ['State/UT', '2018', '2019', '2020', '2021']
29
-
30
- # Convert to numeric
31
  for col in ['2018', '2019', '2020', '2021']:
32
  data[col] = pd.to_numeric(data[col], errors='coerce').fillna(0).astype(int)
33
 
34
- # Sidebar input
35
- st.sidebar.header("🔍 Predict Future Crime")
36
- selected_state = st.sidebar.selectbox("Select a State/UT", data['State/UT'].unique())
37
- start_year = st.sidebar.slider("Select a year to predict", 2022, 2027, 2022)
38
 
39
- # Filter and train model
40
- selected_row = data[data['State/UT'] == selected_state].iloc[0]
41
- years = [2018, 2019, 2020, 2021]
42
- X_train = pd.DataFrame({'Year': years})
43
- y_train = selected_row[['2018', '2019', '2020', '2021']].values
44
 
45
- model = LinearRegression()
46
- model.fit(X_train, y_train)
 
47
 
48
- # Predict future crime rates
49
- future_years = list(range(2022, 2028))
50
- predictions = model.predict(pd.DataFrame({'Year': future_years}))
51
- result_df = pd.DataFrame({
52
- 'Year': future_years,
53
- 'Predicted Crime Cases': [max(0, int(pred)) for pred in predictions]
54
- })
55
 
56
- # Display single year result
57
- selected_year_prediction = result_df[result_df['Year'] == start_year]['Predicted Crime Cases'].values[0]
58
- st.success(f"📌 **Predicted Crime Rate in {selected_state} for the year {start_year}: {selected_year_prediction} cases**")
 
59
 
60
- # Show full table
61
- st.subheader(f"📈 Predicted Crime Rate in {selected_state} (2022–2027)")
62
- st.dataframe(result_df)
63
 
64
- # Line chart
65
- fig, ax = plt.subplots()
66
- ax.plot(result_df['Year'], result_df['Predicted Crime Cases'], marker='o', linestyle='--', color='teal')
67
- ax.set_xlabel("Year")
68
- ax.set_ylabel("Predicted Crime Cases")
69
- ax.set_title(f"Crime Trend Prediction for {selected_state}")
70
- st.pyplot(fig)
 
 
 
 
71
 
72
  except FileNotFoundError:
73
  st.error(f"❌ File not found at path: {csv_path}. Please check the path.")
74
- except Exception as e:
75
- st.error(f"⚠️ An error occurred: {e}")
 
4
  import matplotlib.pyplot as plt
5
 
6
  # Page configuration
7
+ st.set_page_config(page_title="Crime Rate Predictor", layout="centered")
8
+ st.title("🔮 Crime Rate Prediction for Indian States/UTs")
9
 
10
+ # CSV path (Hosted online)
11
  csv_path = "https://huggingface.co/spaces/MLDeveloper/crime_rate_predicition/resolve/main/RS_Session_255_AS_116.1%20(2).csv"
12
 
13
  try:
14
+ # Load and preprocess data
15
  df = pd.read_csv(csv_path)
 
 
 
 
 
16
  data = df[[
17
  'State/UT',
18
  'Number of Cases Registered - 2018-19',
 
21
  'Number of Cases Registered - 2021-22 (up to 31.10.2021)'
22
  ]].copy()
23
  data.columns = ['State/UT', '2018', '2019', '2020', '2021']
 
 
24
  for col in ['2018', '2019', '2020', '2021']:
25
  data[col] = pd.to_numeric(data[col], errors='coerce').fillna(0).astype(int)
26
 
27
+ # --- User Inputs ---
28
+ st.subheader("📝 Enter Details to Predict Future Crime Rates")
29
+ state_input = st.text_input("Enter State/UT Name (e.g., Maharashtra)", "")
30
+ year_input = st.slider("Select Starting Year", 2022, 2026, 2022)
31
 
32
+ if state_input:
33
+ if state_input in data['State/UT'].values:
34
+ selected_row = data[data['State/UT'] == state_input].iloc[0]
35
+ X_train = pd.DataFrame({'Year': [2018, 2019, 2020, 2021]})
36
+ y_train = selected_row[['2018', '2019', '2020', '2021']].values
37
 
38
+ # Train model and predict
39
+ model = LinearRegression()
40
+ model.fit(X_train, y_train)
41
 
42
+ future_years = list(range(year_input, 2028))
43
+ predictions = model.predict(pd.DataFrame({'Year': future_years}))
 
 
 
 
 
44
 
45
+ result_df = pd.DataFrame({
46
+ 'Year': future_years,
47
+ 'Predicted Crime Cases': [max(0, int(pred)) for pred in predictions]
48
+ })
49
 
50
+ # Show predictions
51
+ st.subheader(f"📈 Predicted Crime Rate for {state_input} ({year_input} to 2027)")
52
+ st.dataframe(result_df, use_container_width=True)
53
 
54
+ # Plot
55
+ fig, ax = plt.subplots()
56
+ ax.plot(result_df['Year'], result_df['Predicted Crime Cases'], marker='o', linestyle='--', color='orangered')
57
+ ax.set_xlabel("Year")
58
+ ax.set_ylabel("Predicted Crime Cases")
59
+ ax.set_title(f"{state_input} Crime Rate Prediction")
60
+ st.pyplot(fig)
61
+ else:
62
+ st.warning("⚠️ Please enter a valid State/UT name from the dataset.")
63
+ else:
64
+ st.info("👈 Please enter a State/UT name to begin prediction.")
65
 
66
  except FileNotFoundError:
67
  st.error(f"❌ File not found at path: {csv_path}. Please check the path.")