MLDeveloper commited on
Commit
17e052c
·
verified ·
1 Parent(s): f51fcb6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -19
app.py CHANGED
@@ -3,21 +3,21 @@ import pandas as pd
3
  from sklearn.linear_model import LinearRegression
4
  import matplotlib.pyplot as plt
5
 
6
- # Page config
7
  st.set_page_config(page_title="Crime Rate Prediction", layout="wide")
8
  st.title("📊 Crime Rate Prediction Based on Past Data")
9
 
10
- # CSV path (Make sure this file is uploaded in Streamlit cloud if deployed)
11
  csv_path = "https://huggingface.co/spaces/MLDeveloper/crime_rate_predicition/resolve/main/RS_Session_255_AS_116.1%20(2).csv"
12
 
13
  try:
14
- # Load the dataset
15
  df = pd.read_csv(csv_path)
16
 
17
  st.subheader("📄 Raw Dataset")
18
  st.dataframe(df)
19
 
20
- # Preprocess
21
  data = df[[
22
  'State/UT',
23
  'Number of Cases Registered - 2018-19',
@@ -27,16 +27,16 @@ try:
27
  ]].copy()
28
  data.columns = ['State/UT', '2018', '2019', '2020', '2021']
29
 
30
- # Convert string numbers to integers (if needed)
31
  for col in ['2018', '2019', '2020', '2021']:
32
  data[col] = pd.to_numeric(data[col], errors='coerce').fillna(0).astype(int)
33
 
34
- # Sidebar for user input
35
  st.sidebar.header("🔍 Predict Future Crime")
36
  selected_state = st.sidebar.selectbox("Select a State/UT", data['State/UT'].unique())
37
- start_year = st.sidebar.slider("Select starting year for prediction", 2022, 2026, 2022)
38
 
39
- # Perform prediction for selected state
40
  selected_row = data[data['State/UT'] == selected_state].iloc[0]
41
  years = [2018, 2019, 2020, 2021]
42
  X_train = pd.DataFrame({'Year': years})
@@ -45,25 +45,31 @@ try:
45
  model = LinearRegression()
46
  model.fit(X_train, y_train)
47
 
48
- future_years = list(range(start_year, 2028))
 
49
  predictions = model.predict(pd.DataFrame({'Year': future_years}))
50
-
51
- # Prepare result DataFrame
52
  result_df = pd.DataFrame({
53
  'Year': future_years,
54
  'Predicted Crime Cases': [max(0, int(pred)) for pred in predictions]
55
  })
56
 
57
- st.subheader(f"📈 Predicted Crime Rate in {selected_state} ({start_year}–2027)")
 
 
 
 
 
58
  st.dataframe(result_df)
59
 
60
- # Plotting
61
- fig2, ax2 = plt.subplots()
62
- ax2.plot(result_df['Year'], result_df['Predicted Crime Cases'], marker='o', linestyle='--', color='teal')
63
- ax2.set_xlabel("Year")
64
- ax2.set_ylabel("Predicted Crime Cases")
65
- ax2.set_title(f"Crime Trend Prediction for {selected_state}")
66
- st.pyplot(fig2)
67
 
68
  except FileNotFoundError:
69
  st.error(f"❌ File not found at path: {csv_path}. Please check the path.")
 
 
 
3
  from sklearn.linear_model import LinearRegression
4
  import matplotlib.pyplot as plt
5
 
6
+ # Page configuration
7
  st.set_page_config(page_title="Crime Rate Prediction", layout="wide")
8
  st.title("📊 Crime Rate Prediction Based on Past Data")
9
 
10
+ # CSV path (ensure the file is accessible or uploaded in cloud deployment)
11
  csv_path = "https://huggingface.co/spaces/MLDeveloper/crime_rate_predicition/resolve/main/RS_Session_255_AS_116.1%20(2).csv"
12
 
13
  try:
14
+ # Load dataset
15
  df = pd.read_csv(csv_path)
16
 
17
  st.subheader("📄 Raw Dataset")
18
  st.dataframe(df)
19
 
20
+ # Preprocessing
21
  data = df[[
22
  'State/UT',
23
  'Number of Cases Registered - 2018-19',
 
27
  ]].copy()
28
  data.columns = ['State/UT', '2018', '2019', '2020', '2021']
29
 
30
+ # Convert to numeric
31
  for col in ['2018', '2019', '2020', '2021']:
32
  data[col] = pd.to_numeric(data[col], errors='coerce').fillna(0).astype(int)
33
 
34
+ # Sidebar input
35
  st.sidebar.header("🔍 Predict Future Crime")
36
  selected_state = st.sidebar.selectbox("Select a State/UT", data['State/UT'].unique())
37
+ start_year = st.sidebar.slider("Select a year to predict", 2022, 2027, 2022)
38
 
39
+ # Filter and train model
40
  selected_row = data[data['State/UT'] == selected_state].iloc[0]
41
  years = [2018, 2019, 2020, 2021]
42
  X_train = pd.DataFrame({'Year': years})
 
45
  model = LinearRegression()
46
  model.fit(X_train, y_train)
47
 
48
+ # Predict future crime rates
49
+ future_years = list(range(2022, 2028))
50
  predictions = model.predict(pd.DataFrame({'Year': future_years}))
 
 
51
  result_df = pd.DataFrame({
52
  'Year': future_years,
53
  'Predicted Crime Cases': [max(0, int(pred)) for pred in predictions]
54
  })
55
 
56
+ # Display single year result
57
+ selected_year_prediction = result_df[result_df['Year'] == start_year]['Predicted Crime Cases'].values[0]
58
+ st.success(f"📌 **Predicted Crime Rate in {selected_state} for the year {start_year}: {selected_year_prediction} cases**")
59
+
60
+ # Show full table
61
+ st.subheader(f"📈 Predicted Crime Rate in {selected_state} (2022–2027)")
62
  st.dataframe(result_df)
63
 
64
+ # Line chart
65
+ fig, ax = plt.subplots()
66
+ ax.plot(result_df['Year'], result_df['Predicted Crime Cases'], marker='o', linestyle='--', color='teal')
67
+ ax.set_xlabel("Year")
68
+ ax.set_ylabel("Predicted Crime Cases")
69
+ ax.set_title(f"Crime Trend Prediction for {selected_state}")
70
+ st.pyplot(fig)
71
 
72
  except FileNotFoundError:
73
  st.error(f"❌ File not found at path: {csv_path}. Please check the path.")
74
+ except Exception as e:
75
+ st.error(f"⚠️ An error occurred: {e}")