Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,21 +3,21 @@ import pandas as pd
|
|
3 |
from sklearn.linear_model import LinearRegression
|
4 |
import matplotlib.pyplot as plt
|
5 |
|
6 |
-
# Page
|
7 |
st.set_page_config(page_title="Crime Rate Prediction", layout="wide")
|
8 |
st.title("📊 Crime Rate Prediction Based on Past Data")
|
9 |
|
10 |
-
# CSV path (
|
11 |
csv_path = "https://huggingface.co/spaces/MLDeveloper/crime_rate_predicition/resolve/main/RS_Session_255_AS_116.1%20(2).csv"
|
12 |
|
13 |
try:
|
14 |
-
# Load
|
15 |
df = pd.read_csv(csv_path)
|
16 |
|
17 |
st.subheader("📄 Raw Dataset")
|
18 |
st.dataframe(df)
|
19 |
|
20 |
-
#
|
21 |
data = df[[
|
22 |
'State/UT',
|
23 |
'Number of Cases Registered - 2018-19',
|
@@ -27,16 +27,16 @@ try:
|
|
27 |
]].copy()
|
28 |
data.columns = ['State/UT', '2018', '2019', '2020', '2021']
|
29 |
|
30 |
-
# Convert
|
31 |
for col in ['2018', '2019', '2020', '2021']:
|
32 |
data[col] = pd.to_numeric(data[col], errors='coerce').fillna(0).astype(int)
|
33 |
|
34 |
-
# Sidebar
|
35 |
st.sidebar.header("🔍 Predict Future Crime")
|
36 |
selected_state = st.sidebar.selectbox("Select a State/UT", data['State/UT'].unique())
|
37 |
-
start_year = st.sidebar.slider("Select
|
38 |
|
39 |
-
#
|
40 |
selected_row = data[data['State/UT'] == selected_state].iloc[0]
|
41 |
years = [2018, 2019, 2020, 2021]
|
42 |
X_train = pd.DataFrame({'Year': years})
|
@@ -45,25 +45,31 @@ try:
|
|
45 |
model = LinearRegression()
|
46 |
model.fit(X_train, y_train)
|
47 |
|
48 |
-
|
|
|
49 |
predictions = model.predict(pd.DataFrame({'Year': future_years}))
|
50 |
-
|
51 |
-
# Prepare result DataFrame
|
52 |
result_df = pd.DataFrame({
|
53 |
'Year': future_years,
|
54 |
'Predicted Crime Cases': [max(0, int(pred)) for pred in predictions]
|
55 |
})
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
58 |
st.dataframe(result_df)
|
59 |
|
60 |
-
#
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
st.pyplot(
|
67 |
|
68 |
except FileNotFoundError:
|
69 |
st.error(f"❌ File not found at path: {csv_path}. Please check the path.")
|
|
|
|
|
|
3 |
from sklearn.linear_model import LinearRegression
|
4 |
import matplotlib.pyplot as plt
|
5 |
|
6 |
+
# Page configuration
|
7 |
st.set_page_config(page_title="Crime Rate Prediction", layout="wide")
|
8 |
st.title("📊 Crime Rate Prediction Based on Past Data")
|
9 |
|
10 |
+
# CSV path (ensure the file is accessible or uploaded in cloud deployment)
|
11 |
csv_path = "https://huggingface.co/spaces/MLDeveloper/crime_rate_predicition/resolve/main/RS_Session_255_AS_116.1%20(2).csv"
|
12 |
|
13 |
try:
|
14 |
+
# Load dataset
|
15 |
df = pd.read_csv(csv_path)
|
16 |
|
17 |
st.subheader("📄 Raw Dataset")
|
18 |
st.dataframe(df)
|
19 |
|
20 |
+
# Preprocessing
|
21 |
data = df[[
|
22 |
'State/UT',
|
23 |
'Number of Cases Registered - 2018-19',
|
|
|
27 |
]].copy()
|
28 |
data.columns = ['State/UT', '2018', '2019', '2020', '2021']
|
29 |
|
30 |
+
# Convert to numeric
|
31 |
for col in ['2018', '2019', '2020', '2021']:
|
32 |
data[col] = pd.to_numeric(data[col], errors='coerce').fillna(0).astype(int)
|
33 |
|
34 |
+
# Sidebar input
|
35 |
st.sidebar.header("🔍 Predict Future Crime")
|
36 |
selected_state = st.sidebar.selectbox("Select a State/UT", data['State/UT'].unique())
|
37 |
+
start_year = st.sidebar.slider("Select a year to predict", 2022, 2027, 2022)
|
38 |
|
39 |
+
# Filter and train model
|
40 |
selected_row = data[data['State/UT'] == selected_state].iloc[0]
|
41 |
years = [2018, 2019, 2020, 2021]
|
42 |
X_train = pd.DataFrame({'Year': years})
|
|
|
45 |
model = LinearRegression()
|
46 |
model.fit(X_train, y_train)
|
47 |
|
48 |
+
# Predict future crime rates
|
49 |
+
future_years = list(range(2022, 2028))
|
50 |
predictions = model.predict(pd.DataFrame({'Year': future_years}))
|
|
|
|
|
51 |
result_df = pd.DataFrame({
|
52 |
'Year': future_years,
|
53 |
'Predicted Crime Cases': [max(0, int(pred)) for pred in predictions]
|
54 |
})
|
55 |
|
56 |
+
# Display single year result
|
57 |
+
selected_year_prediction = result_df[result_df['Year'] == start_year]['Predicted Crime Cases'].values[0]
|
58 |
+
st.success(f"📌 **Predicted Crime Rate in {selected_state} for the year {start_year}: {selected_year_prediction} cases**")
|
59 |
+
|
60 |
+
# Show full table
|
61 |
+
st.subheader(f"📈 Predicted Crime Rate in {selected_state} (2022–2027)")
|
62 |
st.dataframe(result_df)
|
63 |
|
64 |
+
# Line chart
|
65 |
+
fig, ax = plt.subplots()
|
66 |
+
ax.plot(result_df['Year'], result_df['Predicted Crime Cases'], marker='o', linestyle='--', color='teal')
|
67 |
+
ax.set_xlabel("Year")
|
68 |
+
ax.set_ylabel("Predicted Crime Cases")
|
69 |
+
ax.set_title(f"Crime Trend Prediction for {selected_state}")
|
70 |
+
st.pyplot(fig)
|
71 |
|
72 |
except FileNotFoundError:
|
73 |
st.error(f"❌ File not found at path: {csv_path}. Please check the path.")
|
74 |
+
except Exception as e:
|
75 |
+
st.error(f"⚠️ An error occurred: {e}")
|