Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
from sklearn.linear_model import LinearRegression | |
# Streamlit page config | |
st.set_page_config(page_title="BigMart Sales Predictor", page_icon="🛒", layout="centered") | |
st.title("🛒 BigMart Sales Prediction") | |
st.markdown("Enter item details below to predict sales:") | |
# Input fields | |
project_name = st.text_input("📦 Project Name") | |
item_weight = st.number_input("⚖️ Item Weight (in kg)", min_value=0.0, step=0.1) | |
item_visibility = st.slider("👀 Item Visibility", 0.0, 1.0, 0.05) | |
item_mrp = st.number_input("💰 Item MRP", min_value=0.0, step=1.0) | |
# Predict button | |
if st.button("Predict Sales"): | |
if not project_name: | |
st.warning("Please enter a project name.") | |
else: | |
# Dummy training data for demo | |
X_train = np.array([ | |
[9.3, 0.016, 249.8], | |
[5.92, 0.019, 48.27], | |
[17.5, 0.016, 141.62], | |
[19.2, 0.0075, 182.095], | |
]) | |
y_train = np.array([3735.14, 443.42, 2233.6, 3612.47]) # Target: Item_Outlet_Sales | |
# Train model | |
model = LinearRegression() | |
model.fit(X_train, y_train) | |
# Prepare user input | |
user_input = np.array([[item_weight, item_visibility, item_mrp]]) | |
predicted_sales = model.predict(user_input)[0] | |
st.success(f"📈 Predicted Sales for '{project_name}': ₹{predicted_sales:,.2f}") | |
# Sidebar | |
st.sidebar.title("📌 About") | |
st.sidebar.markdown( | |
""" | |
This app predicts sales based on item weight, visibility, and MRP using a demo ML model. | |
🔧 Replace with a trained model on BigMart dataset for real-world use! | |
""" | |
) | |