Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
from sklearn.linear_model import LinearRegression
|
5 |
|
6 |
# Streamlit page config
|
@@ -11,42 +10,40 @@ st.markdown("Enter item details below to predict sales:")
|
|
11 |
|
12 |
# Input fields
|
13 |
project_name = st.text_input("📦 Project Name")
|
14 |
-
item_weight = st.number_input("⚖️ Item Weight (kg)", min_value=0.0, step=0.1)
|
15 |
-
item_visibility = st.slider("👀 Item Visibility", 0.0, 1.0, 0.
|
16 |
-
item_mrp = st.number_input("💰 Item MRP
|
17 |
|
18 |
# Predict button
|
19 |
if st.button("Predict Sales"):
|
20 |
if not project_name:
|
21 |
st.warning("Please enter a project name.")
|
22 |
else:
|
23 |
-
# Dummy
|
24 |
X_train = np.array([
|
25 |
[9.3, 0.016, 249.8],
|
26 |
[5.92, 0.019, 48.27],
|
27 |
[17.5, 0.016, 141.62],
|
28 |
[19.2, 0.0075, 182.095],
|
29 |
])
|
30 |
-
y_train = np.array([3735.14, 443.42, 2233.6, 3612.47]) #
|
31 |
|
|
|
32 |
model = LinearRegression()
|
33 |
model.fit(X_train, y_train)
|
34 |
|
35 |
-
# Prepare input
|
36 |
user_input = np.array([[item_weight, item_visibility, item_mrp]])
|
37 |
-
|
38 |
|
39 |
-
st.success(f"📈 Predicted Sales for '{project_name}': ₹{
|
40 |
|
41 |
-
# Sidebar
|
42 |
st.sidebar.title("📌 About")
|
43 |
st.sidebar.markdown(
|
44 |
"""
|
45 |
-
This app
|
46 |
-
|
47 |
-
-
|
48 |
-
- Item MRP
|
49 |
-
|
50 |
-
Replace with a trained BigMart dataset model for production use.
|
51 |
"""
|
52 |
)
|
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
|
|
3 |
from sklearn.linear_model import LinearRegression
|
4 |
|
5 |
# Streamlit page config
|
|
|
10 |
|
11 |
# Input fields
|
12 |
project_name = st.text_input("📦 Project Name")
|
13 |
+
item_weight = st.number_input("⚖️ Item Weight (in kg)", min_value=0.0, step=0.1)
|
14 |
+
item_visibility = st.slider("👀 Item Visibility", 0.0, 1.0, 0.05)
|
15 |
+
item_mrp = st.number_input("💰 Item MRP", min_value=0.0, step=1.0)
|
16 |
|
17 |
# Predict button
|
18 |
if st.button("Predict Sales"):
|
19 |
if not project_name:
|
20 |
st.warning("Please enter a project name.")
|
21 |
else:
|
22 |
+
# Dummy training data for demo
|
23 |
X_train = np.array([
|
24 |
[9.3, 0.016, 249.8],
|
25 |
[5.92, 0.019, 48.27],
|
26 |
[17.5, 0.016, 141.62],
|
27 |
[19.2, 0.0075, 182.095],
|
28 |
])
|
29 |
+
y_train = np.array([3735.14, 443.42, 2233.6, 3612.47]) # Target: Item_Outlet_Sales
|
30 |
|
31 |
+
# Train model
|
32 |
model = LinearRegression()
|
33 |
model.fit(X_train, y_train)
|
34 |
|
35 |
+
# Prepare user input
|
36 |
user_input = np.array([[item_weight, item_visibility, item_mrp]])
|
37 |
+
predicted_sales = model.predict(user_input)[0]
|
38 |
|
39 |
+
st.success(f"📈 Predicted Sales for '{project_name}': ₹{predicted_sales:,.2f}")
|
40 |
|
41 |
+
# Sidebar
|
42 |
st.sidebar.title("📌 About")
|
43 |
st.sidebar.markdown(
|
44 |
"""
|
45 |
+
This app predicts sales based on item weight, visibility, and MRP using a demo ML model.
|
46 |
+
|
47 |
+
🔧 Replace with a trained model on BigMart dataset for real-world use!
|
|
|
|
|
|
|
48 |
"""
|
49 |
)
|