|
import streamlit as st |
|
import pandas as pd |
|
import google.generativeai as genai |
|
import os |
|
from dotenv import load_dotenv |
|
import plotly.graph_objects as go |
|
|
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered") |
|
|
|
|
|
api_key = os.getenv("GOOGLE_API_KEY") |
|
if api_key: |
|
genai.configure(api_key=api_key) |
|
else: |
|
st.error("API key is missing. Please set the GOOGLE_API_KEY environment variable.") |
|
|
|
|
|
model = genai.GenerativeModel("gemini-1.5-pro") |
|
|
|
|
|
@st.cache_data |
|
def load_data(): |
|
df = pd.read_csv('https://huggingface.co/spaces/MLDeveloper/AI_based_Solar_Project_Estimation_Tool/resolve/main/solar_data_india_2024.csv') |
|
return df |
|
|
|
df = load_data() |
|
|
|
|
|
st.title("AI-based Solar Project Estimation Tool") |
|
st.write("### Enter Your Details Below:") |
|
|
|
with st.form("solar_form"): |
|
state_options = df['State'].dropna().unique() |
|
|
|
location = st.selectbox("Select your State", options=sorted(state_options)) |
|
roof_size = st.number_input("Enter your roof size (in sq meters)", min_value=1) |
|
electricity_bill = st.number_input("Enter your monthly electricity bill (₹)", min_value=0) |
|
|
|
submitted = st.form_submit_button("Get Estimate") |
|
|
|
|
|
def build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw): |
|
prompt = f""" |
|
You are a solar project estimator tool. Based on the following details, calculate and return only the values without any extra description: |
|
Location: {location} |
|
Roof size: {roof_size} sq meters |
|
Monthly electricity bill: ₹{electricity_bill} |
|
Average GHI: {ghi} kWh/m²/day |
|
Solar system cost per kW: ₹{solar_cost_per_kw} |
|
Respond strictly in this format (do not add anything extra): |
|
Estimated solar system size in kW: <value> |
|
Estimated daily solar output in kWh: <value> |
|
Total system cost in ₹: <value> |
|
Monthly savings in ₹: <value> |
|
Payback period in years: <value> |
|
""" |
|
return prompt |
|
|
|
|
|
if submitted and location and roof_size > 0 and electricity_bill >= 0: |
|
state_data = df[df['State'].str.contains(location, case=False)].iloc[0] |
|
|
|
if state_data is not None: |
|
ghi = state_data['Avg_GHI (kWh/m²/day)'] |
|
solar_cost_per_kw = state_data['Solar_Cost_per_kW (₹)'] |
|
|
|
prompt_text = build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw) |
|
|
|
|
|
with st.spinner("Generating solar estimate with Gemini..."): |
|
response = model.generate_content(prompt_text) |
|
|
|
|
|
st.subheader("Solar Project Estimate") |
|
|
|
estimated_data = response.text.strip().split("\n") |
|
|
|
system_size_kw = None |
|
monthly_savings_rs = None |
|
total_system_cost = None |
|
|
|
for point in estimated_data: |
|
if ":" in point: |
|
try: |
|
key, value = point.split(":", 1) |
|
key = key.strip() |
|
value = value.strip() |
|
|
|
st.write(f"**{key}**: {value}") |
|
|
|
if "Estimated solar system size" in key: |
|
system_size_kw = float(value.split()[0]) |
|
if "Monthly savings" in key: |
|
monthly_savings_rs = float(value.split()[0]) |
|
if "Total system cost" in key: |
|
total_system_cost = float(value.split()[0]) |
|
|
|
except ValueError: |
|
st.warning("There was an issue processing the response.") |
|
|
|
|
|
if total_system_cost is not None and monthly_savings_rs is not None: |
|
st.subheader("📊 Visual Summary") |
|
|
|
fig = go.Figure(data=[ |
|
go.Bar( |
|
x=["Total System Cost (₹)", "Monthly Savings (₹)"], |
|
y=[total_system_cost, monthly_savings_rs], |
|
marker_color=['#636EFA', '#00CC96'] |
|
) |
|
]) |
|
fig.update_layout(title="Solar Project Financial Estimates", yaxis_title="Amount (₹)", xaxis_title="Parameters") |
|
st.plotly_chart(fig, use_container_width=True, key="solar_graph") |
|
|
|
else: |
|
st.error("Sorry, the location entered does not match any available data.") |
|
else: |
|
st.warning("Please fill out all fields to see your solar project estimate.") |
|
|